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Two different regimes for anharmonicity

V (R) = V0 + V2(R)+V3(R) + V4(R) + . . .

Perturbative regime:
V3(R) + V4(R) + · · · � V2(R)

Non-perturbative regime:
V3(R) + V4(R) + · · · ∼ V2(R)
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Self-energy and the Dyson equation

The effect of anharmonicity (and any other interaction) can be included within
many-body perturbation theory in the displacement correlation function or Green’s
function

Gab(z) = −
√

MaMb 〈Tzua(z)ub(0)〉ρH

where now H includes anharmonic interactions

All the interactions affecting the phonons define the phonon self energy Π

The interacting Green function can be calculated through Dyson’s equation

G(z) = G 0(z) + G 0(z)Π(z)G(z)

The non-interacting Green’s function is calculated with the harmonic H0
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The anharmonic self-energy in the perturbative limit

At the perturbative lowest order there
are 3 diagrams that contribute to the
phonon self-energy: tadpole (T), loop
(L), and bubble (B)

The self-energy diagrams need to be
constructed with Feyman diagram
rules and have to be calculated with
Matsubara summation techniques (see
Mahan book)

These are the self-energy terms

(T )

Π µ(q) =
−2ωµ(q)

N

∑
νν′q′

(3)

φ ννν′(−q′, q, 0)
(3)

φ ν′µµ(0, q,−q)
2nB (ων(q′)) + 1

ων′(0)

(L)

Πµ(q) =
ωµ(q)

N

∑
νq′

(4)

φµµνν(q,−q, q′,−q′)(2nB (ων(q′)) + 1)

(B)

Π µ(q, ω + iη) =
−ωµ(q)

N

∑
νν′q′

|
(3)

φµνν′(q, q
′,−q − q′)|2F (ω + iη, ων(q′), ων′(−q − q′))
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The anharmonic self-energy in the perturbative limit

In the equation above

(n)

φ µ1···µn
(q1, · · · , qn) =

∑
a1···an

(n)

φ a1···an
(q, · · · , qn)√

Ma1 · · ·Man

ea1
µ1

(−q1) · · · ean
µn

(−qn)√
2nωµ1 (q1) · · ·ωµn (qn)

F (ω + iη, ω1, ω2) =
2(ω1 + ω2)(1 + nB (ω1) + nB (ω2))

(ω1 + ω2)2 − (ω + iη)2

+
2(ω1 − ω2)(nB (ω2)− nB (ω1))

(ω1 − ω2)2 − (ω + iη)2

and the phonon frequencies and polarization vectors are the eigenvalues and
eigenvectors of the harmonic dynamical matrix:

∑
b

(2)

φ ab(q)√
MaMb

eb
µ(q) = ω2

µ(q)eq
µ(q)

These force constansts are derivatives of the Born-Oppenheimer potential
calculated at the R0 positions that minimize it:

(n)

φ a1···an
=

[
∂nV (R)

∂Ra1 · · · ∂Ran

]
R=R0

Maradudin and Fein, Phys. Rev. 128, 2589 (1962)

Rousseau and Bergara, PRB 82, 104504 (2010)
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The spectral function in the perturbative limit

Experimental signals are proportional to the spectral function

σ(q, ω) = −ω
π

∑
a

Im [Gaa(q, ω + iη)]
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Obtaining 3rd and 4th order force-constants is complex

(n)

φ a1···an
=

[
∂nV (R)

∂Ra1 · · · ∂Ran

]
R=R0

Density Functional Perturbation Theory and the 2n + 1 theorem to obtain 3rd
order force-constants
Paulatto et al., PRB (2013)

Finite difference approaches (very tedious)
Errea et al., PRL (2011)

Empirical potentials
Chen et al., PRL (2014)

Compressive sensing lattice dynamics
Zhou et al., PRL (2014)
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Quantum and non-perturbative anharmonic effects
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Quantum and non-perturbative anharmonic effects
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Quantum and non-perturbative anharmonic effects
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Quantum and non-perturbative anharmonic effects
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Non-perturbative anharmonic regime occurs in many
systems

Compounds with light atoms

Hydrogen storage materials

Hydrogen-based superconductors

Hydrogen at high pressures

...

At very high temperatures

Close to melting

...

Second-order structural displacive
phase transitions in

Charge-density wave (CDW)
materials

Ferroelectrics

Thermoelectrics

Multiferroics

...
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How to deal with non-perturbative anharmonicity from
first-principles

Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

Phonons from velocity autocorrelation functions

Zhang et al., PRL (2014)

TDEP: effective temperature dependent V2 and V3 from AIMD

Hellman et al., PRB (2011)

Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces

Variational methods:

VSCF: Variational self-consistent field equations

Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)

SCHA: Minimization of the free energy with a trial harmonic density matrix

Hooton, Philos. Mag. Ser. (1955)

SSCHA: Stochastic implementation of the SCHA
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The stochastic self-consistent harmonic approximation
(SSCHA)

The idea of the SSCHA is to obtain the harmonic density matrix ρ̃ that minimizes
the total free energy

F [ρ̃] = 〈Ti + V 〉ρ̃ +
1

β
〈ln ρ̃〉ρ̃

The probability distribution function that ρ̃ defines, ρ̃R,Φ(R), is a Gaussian and
can be parametrized by centroid positions R and auxiliary second-order force
constants Φ

It is like a Hartree-Fock theory but for the phonons

Ψα1...αn (r) =
1√
N!

∣∣∣∣∣∣∣∣∣
ψα1 (r 1) . . . ψα1 (rN )

...
...

...
ψαN (r 1) . . . ψαN (rN )

∣∣∣∣∣∣∣∣∣
E = 〈Ψα1...αn | (Te + Vee) |Ψα1...αn 〉
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The SSCHA is a quantum variational method

The exact problem

The exact density matrix

H = Ti + V (R) ρH = e−βH/ZH

The exact free energy

F = 〈Ti + V 〉ρH
+

1

β
〈ln ρH〉ρH

The variational problem

Trial density matrix ρ̃H from a trial
Hamiltonian

H = Ti + V(R) ρ̃H = e−βH/ZH

The variational free energy

F [H] = 〈Ti + V 〉ρ̃H +
1

β
〈ln ρ̃H〉ρ̃H

Variational principle

F [H] ≥ F
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The SSCHA trial Hamiltonian

The trial Hamiltonian is harmonic and is parametrized with the centroid positions
R and auxiliary second-order force constants Φ

V(R) =
1

2

∑
ab

Φab(Ra −Ra)(Rb −Rb)

Note that this potential is different from the harmonic potential

V2(R) =
1

2

∑
ab

(2)

φ ab(Ra − R0a)(Rb − R0b)

The variational free energy will depend only on R and Φ so we will write
ρ̃H → ρ̃R,Φ and F [H]→ F [R,Φ]

The goal of the SSCHA is to minimize F [R,Φ] with respect to R and Φ

It is easy to show that the SSCHA free energy can be written as

F [R,Φ] = FH + 〈V − V〉ρ̃R,Φ

where FH is the harmonic free energy given by the trial harmonic Hamiltonian
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The SSCHA solution in a 1D example
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The SSCHA probability distribution function

The SSCHA probability distribution function is a product of Gaussians, exactly as
the harmonic probability distribution function

ρ̃R,Φ(R) = 〈R|ρ̃R,Φ|R〉 =
√

det[Ψ−1/(2π)]e−
1
2

∑
ab(Ra−Ra)Ψ−1

ab
(Rb−Rb)

Ψ−1
ab =

√
MaMb

∑
µ

ea
µe

b
µ

a2
µ

aµ =
~

2wµ
[1 + 2nB (wµ)]

At T = 0 K it equals the ground state ionic wave function

In the equations above the frequencies and the polarization vectors are not the
eigenvalues and eigenfunctions of the harmonic force-constants,

∑
b

(2)

φ ab√
MaMb

e
b
µ = ω2

µe
a
µ,

but of the auxiliary force-constants∑
b

Φab√
MaMb

e
b
µ = w

2
µe

a
µ
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The SSCHA probability distribution function

The auxiliary frequencies wµ are just
parameters that describe the SSCHA
probability distribution function, not
physical quantities, and are positive
definite by construction

The expectation value of the position
operator are the centroids since

〈R〉ρ̃R,Φ
= R

In normal mode basis
(Qµ =

∑
a(Ra −Ra)

ea
µ√
Ma

) the
probability distribution function is

ρ̃R,Φ(Q) =
∏
µ

1√
2πa2

µ

e
−

Q2
µ

2a2
µ

The width of the Gaussian probability
is proportional to a

The higher the frequency the more
peaked the distribution, the higher the
temperature the wider

−4 −2 0 2 4

Q [arb. units]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
(Q

)

Fixed T

h̄ω = 0.2kBT

h̄ω = 0.5kBT

h̄ω = 1kBT

h̄ω = 4kBT

−4 −2 0 2 4

Q [arb. units]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
(Q

)

Fixed ω

kBT = 0.1h̄ω

kBT = 0.5h̄ω

kBT = 1h̄ω

kBT = 4h̄ω
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Quantum statistical averages

Given the density matrix, the quantum statistical average of any operator that just
depends on the ionic positions O(R) can be calculated as

〈O〉ρ̃R,Φ
= tr(Oρ̃R,Φ) =

∫
dRO(R)ρ̃R,Φ(R)

An example:
The mean square displacement of an ion〈

(Ra −Ra)2
〉
ρ̃R,Φ

=

∫
dR(Ra −Ra)2ρ̃R,Φ(R)

=
∑
µν

ea
µe

a
ν

Ma

∫
dQQµQν ρ̃R,Φ(Q)

=
∑
µ

ea
µe

a
µ

Ma

~
2wµ

[1 + 2nB (wµ)]
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F [R,Φ]

Minimization trajectory in the parameter space (R; Φ)

H0 → H1 → H2 → . . . → Hn

(R; Φ)0 → (R; Φ)1 → (R; Φ)2 → . . . → (R; Φ)n

At the minimum

The eigenvalues w2
µ and the eigenvectors ea

µ of Φ define the renormalized probability

distribution function, not the experimental phonon frequencies

R are the renormalized positions at which the ionic wave function are centered (the

centroids)

F [R,Φ] is a good variational approximation of the exact free energy

Need the gradient of the functional F [R,Φ]
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The SSCHA gradients

The gradients of F [R,Φ] are

∂F [R,Φ]

∂Ra
= −

〈
fa(R)− f Va (R)

〉
ρ̃R,Φ

∂F [R,Φ]

∂Φcd
=

∑
ab

Λ[0]abcd

√
MaMbMcMd

〈(
fb(R)− f Vb (R)

)∑
e

Ψ−1
ae (Re −Re)

〉
ρ̃R,Φ

We have quantum statistical averages of BO forces fa and BO forces times
displacements. f Va (R) = −

∑
b Φab(Rb −Rb) is the force derived from the trial

potential

The Λ[0] tensor is

Λ[0]abcd =
∑
µν

~
4wνwµ

e
a
νe

b
µe

c
νe

d
µ

{
dnB (wµ)

dwµ
− 2nB (wµ)+1

2wµ
, wν = wµ

nB (wµ)−nB (wν )

wµ−wν − 1+nB (wµ)+nB (wν )

wµ+wν
, wν 6= wµ

With the gradients a gradient-descent minimization can be performed

The gradient is symmetrized at every step, so the minimization is performed
respecting the symmetries
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A preconditioned gradient descent

x

f(x)
f(x) = A + B(x − xmin)2

xminx0

df(x0)
dx

= 2B(x0 − xmin)

x1 = x0 − λ
df(x0)

dx
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A preconditioned gradient descent

x

f(x)
f(x) = A + B(x − xmin)2

xminx0

df(x0)
dx

= 2B(x0 − xmin)

x1 = x0 − λ ( d2f(x0)
dx2 )

−1
df(x0)

dx
= x0 − λ(2B)−12B(x0 − xmin)
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A preconditioned gradient descent

The gradient-descent is much more efficient if the descent is preconditioned and
the update of the centroids and auxiliary force constants is performed as

Φ(n+1) = Φ(n) − λΦ

∑
ab

(
∂2F

∂Φ∂Φab

)−1
∂F
∂Φab

R(n+1) = R(n) − λR
∑

a

(
∂2F

∂R∂Ra

)−1
∂F
∂Ra

.

The steps λR and λΦ are adimensional

It can be shown that in this case

Φ
(n+1)
ab = Φ

(n)
ab − λΦ

〈(
fb(R)− f Vb (R)

)∑
c

Ψ−1
ac (Rc −Rc )

〉
ρ̃R,Φ

R(n+1)
a = R(n)

a + λR
∑

b

Φ−1
ab

〈
fb(R)− f Vb (R)

〉
ρ̃R,Φ
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The SSCHA self-consistent equation

The SSCHA minimization can be performed fixing R and only optimizing the
auxiliary force constants

In that case the SSCHA solution will obey the following self-consistent equation

Φab(R) =

〈
∂2V

∂Ra∂Rb

〉
ρ̃Φ(R)

This self-consistent equation opens a way to implement the SSCHA without using
the gradient-descent approach
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Stochastic calculation of the free energy and its gradient

The calculation of the free energy and the gradient need

〈V (R)− V(R)〉ρ̃R,Φ
,
〈
fb(R)− f Vb (R)

〉
ρ̃R,Φ

,
〈(

fb(R)− f Vb (R)
)

(Rc −Rc )
〉
ρ̃R,Φ

Importance sampling for the quantum statistical averages

Quantum statistical averages involve observables that depend on the position

〈O〉ρ̃R,Φ
= tr[ρ̃R,ΦO] =

∫
dRO(R)ρ̃R,Φ(R)

Create Nc ionic configurations in a supercell according to ρ̃(R,Φ)0
(R): {RI}I =1,...,Nc

Stochastic evaluation of the integral: 〈O〉ρH0
' 1

Nc

∑Nc
I =1 O(RI )

Requires to evaluate forces and energies in supercells: f(RI ),V (RI )
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The calculation of the free energy and the gradient need

〈V (R)− V(R)〉ρ̃R,Φ
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〈
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〉
ρ̃R,Φ

,
〈(

fb(R)− f Vb (R)
)

(Rc −Rc )
〉
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Reweighting for the quantum statistical averages for CG step n > 0

The calculated forces and energies can be recycled throughout the CG minimization∫
dRO(R)ρ̃(R,Φ)n (R) =

∫
dRO(R)

ρ̃(R,Φ)n
(R)

ρ̃(R,Φ)0
(R)
ρ̃(R,Φ)0

(R) '
1

Nc

∑Nc
I =1 O(RI )

ρ̃(R,Φ)n
(RI )

ρ̃(R,Φ)0
(RI )

The reweighting procedure is valid as long as

1
Nc

∑Nc
I =1

ρ̃(R,Φ)n
(RI )

ρ̃(R,Φ)0
(RI )
∼ 1

The SSCHA can be applied at any degree of theory

empirical potentials

DFT ab initio

Beyond DFT (Monte Carlo, GW, . . . )
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The SSCHA coming out of statistical range

The SSCHA stops the minimization if
the created set of configurations no
longer resembles ρ̃(R,Φ)n

This is detected according to the
Kong-Liu criteria that sets the number
of effective configurations at step n

Neff
n =

∑Nc
I =1 ρ

2
n(I )(∑Nc

I =1 ρn(I )
)2

where the weights are

ρn(I ) =
ρ̃(R,Φ)n

(RI )

ρ̃(R,Φ)0
(RI )
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Q [arb. units]
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ρ̃
(Q

)

ρ̃0

ρ̃n

If at step n Neff
n /Nc < η, where η is a number around 0.5, the SSCHA

minimization stops and one should create new configurations with the updated
ρ̃(R,Φ)n
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The SSCHA convergence threshold

The SSCHA calculation is stopped when the values of the gradients become
smaller than a ratio (δ) of its estimated error∣∣∣∣∂F [R,Φ]

∂Φ

∣∣∣∣ < δ

∣∣∣∣∆∂F [R,Φ]

∂Φ

∣∣∣∣∣∣∣∣∂F [R,Φ]

∂R

∣∣∣∣ < δ

∣∣∣∣∆∂F [R,Φ]

∂R

∣∣∣∣
When this criteria is reached in both gradients the calculation is assumed to be
converged

The ideal thing is to use a very small δ and try to reach 0 gradients
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SSCHA calculation example

3.24Å

3.31Å
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R3m Fm-3m
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SSCHA calculation example

First populations with 100 configurations each

6 populations to reach convergence

Evolution of the free energy, gradients, and
Kong-Liu ratio

Evolution of the auxiliary frequencies
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SSCHA calculation example

Add more configurations for a final run

Evolution of the free energy, gradients, and
Kong-Liu ratio

Evolution of the auxiliary frequencies
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Thermodynamic properties of PdH
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The optimization of the lattice in the SSCHA

The SSCHA can be used to relax the lattice parameters of a structure considering
quantum and thermal effects, and full anharmonicity

When a lattice is relaxed in standard methods the contribution of the ions to the
energy is neglected as the stress tensor is calculated from V (R)

PBO
αβ = −N

Ω

[
∂V (R)

∂εαβ

]
ε=0

In the SSCHA we can calculate the stress tensor including ionic quantum and
thermal effects in the lattice parameters

Pαβ = −N

Ω

[
∂F [R,Φ]

∂εαβ

]
ε=0

=
〈
PBO
αβ (R)

〉
ρ̃R,Φ

− N

2Ω

∑
s

〈
uαs f

β
s + uβs f

α
s

〉
ρ̃R,Φ

For that, apart from forces, the classical PBO
αβ stresses need to be calculated for

each of the structures in the ensemble
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The optimization of the lattice in the SSCHA

The ensemble is created with constant lattice and the lattice vectors {ai} are
updated when creating the next ensemble as

a′iα = aiα + λ{ai}
∑
β

εαβaiβ ,

with

εαβ =
Ω

N
(Pαβ − P∗δαβ)

P∗ is the target pressure

The best λ{ai} step is obtained with

λ{ai} =
1

3ΩB0

with B0 the bulk modulus
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SSCHA calculation flowchart with cell relaxation
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Structural relaxation with the SSCHA in LaH10
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On the basis of the unit cell volume obtained by X-ray diffraction, the 
hydrogen-to-lanthanum ratio was estimated to be between 9 and 12. 
The lanthanum atoms adopted a face-centred cubic (fcc) arrangement 
at pressures greater than about 160 GPa, whereas at lower pressures 
the lattice was rhombohedral with a lanthanum sublattice of the R m3  
space group. Owing to the small X-ray cross-section of hydrogen, it is 
not experimentally possible to resolve the hydrogen sublattice directly. 
More recently, evidence of a superconducting transition at 260 K and 
188 GPa was reported in a lanthanum superhydride4,20. These findings 
were subsequently confirmed by the measurement of a Tc of 250 K from 
137 to 218 GPa in a structure with an fcc arrangement of the lanthanum 
atoms, suggesting a LaH10 stoichiometry5.

Although it is tempting to assign the superconductivity at 250 K to 
the previously predicted Fm m3  phase2–5, there is a clear problem: the 
Fm m3  structure is predicted to be dynamically unstable over the whole 
pressure range in which a 250 K Tc has been observed. This would imply 
that the Fm m3  phase is not a minimum of the Born–Oppenheimer 
energy surface, and consequently a Tc has not been estimated for this 
phase in the experimental pressure range. The contradiction between 
the observation of superconductivity and the predicted instability of 
the Fm m3  phase may indicate a problem with the classical treatment 
of the atomic vibrations in the calculations. Considering that quantum 
proton fluctuations symmetrize hydrogen bonds in the high-pressure 
X phase of ice21 and in H3S22,23, a similar situation is expected in LaH10. 
Here we show how quantum atomic fluctuations completely reshape 
the energy landscape by removing classical local minima, rendering 
the Fm m3  phase the true ground state and the state responsible for 
the observed superconducting critical temperature.

We start by using DFT to calculate the lowest-enthalpy structures of 
LaH10 as a function of pressure, using state-of-the-art methods for the 
prediction of crystal structure24. The contribution associated with 
atomic fluctuations is not included, so that the energy corresponds 
solely to the Born–Oppenheimer energy V(R), where R represents the 
position of atoms treated classically as simple points. As shown in Fig. 1, 
different distorted phases of LaH10 are thermodynamically more stable 

than the Fm m3  phase. At pressures greater than about 250 GPa, all 
phases merge to the Fm m3   symmetric phase. These results are in agree-
ment with previous calculations2, even though we identify other pos-
sible distorted structures with lower enthalpy—such as the R m3 , C2 
and P1 (not shown) phases. These phases feature distortion not only 
in the position of the hydrogen atoms but also in the lanthanum sublat-
tice, leading to a non-fcc arrangement that should be detectable by 
X-ray analysis (see Extended Data Fig. 1). The fact that many structures 
are predicted emphasizes that the classical V(R) energy surface has a 
multifunnel structure that is tractable to many different saddle and 
local minima, as shown in Fig. 1.

This picture completely changes when we include the energy of 
quantum atomic fluctuations—the zero-point energy. We calculate the 
zero-point energy within the stochastic self-consistent harmonic 
approximation (SSCHA)25,26. The SSCHA is a variational method that 
calculates the energy of the system RE( ( )) including atomic quantum 
fluctuations as a function of the centroid positions R, which determine 
the centre of the ionic wave functions. The calculations are performed 
without approximating V(R), keeping all of its anharmonic terms. We 
perform a minimization of RE( ) and determine the centroid positions 
at its minimum. By calculating the stress tensor from RE( ) (ref. 26),  
we relax the lattice parameters in order to find structures with isotropic 
stress conditions considering quantum effects. We start the quantum 
relaxation for both R m3  and C2 phases with the lattice that yields a 
classical isotropic pressure of 150 GPa and vanishing classical forces—
that is, calculated from V(R). All quantum relaxations quickly evolve  
into the Fm m3  phase (Extended Data Fig. 4). This suggests that the quan-
tum energy RE( ( )) landscape is much simpler than the classical V(R)  
landscape, as shown in Fig. 1, and that the ground state of LaH10 over  
the pressure range of interest is the Fm m3  phase with sodalite-type  
symmetry. The quantum effects are substantial, reshaping the  
energy landscape and stabilizing structures by more than 60 meV  
per LaH10.

Our results further confirm that the Fm m3  phase of LaH10 is respon-
sible for the superconductivity at 250 K. This is consistent with the fcc 
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Fig. 1 | Quantum effects stabilize the symmetric 
Fm m3  phase of LaH10. a, Enthalpy as a function of 
pressure for different structures of LaH10, 
neglecting zero-point energy in the calculations. 
Here, pressure is calculated classically from V(R), 
neglecting quantum effects on V(R). b, Left, a Born–
Oppenheimer energy surface V(R), exemplifying 
the presence of many local minima belonging to 
distorted structures. R represents the positions of 
atoms treated classically as simple points. Right, the 
configurational energy surface RE ( ), including 
quantum effects. R represents the quantum 
centroid positions, which determine the centre of 
the ionic wave functions—that is, the average atomic 
positions. By including quantum effects, all phases 
collapse to a single phase: the highly symmetric 
Fm m3 .

Nature | Vol 578 | 6 February 2020 | 67

On the basis of the unit cell volume obtained by X-ray diffraction, the 
hydrogen-to-lanthanum ratio was estimated to be between 9 and 12. 
The lanthanum atoms adopted a face-centred cubic (fcc) arrangement 
at pressures greater than about 160 GPa, whereas at lower pressures 
the lattice was rhombohedral with a lanthanum sublattice of the R m3  
space group. Owing to the small X-ray cross-section of hydrogen, it is 
not experimentally possible to resolve the hydrogen sublattice directly. 
More recently, evidence of a superconducting transition at 260 K and 
188 GPa was reported in a lanthanum superhydride4,20. These findings 
were subsequently confirmed by the measurement of a Tc of 250 K from 
137 to 218 GPa in a structure with an fcc arrangement of the lanthanum 
atoms, suggesting a LaH10 stoichiometry5.

Although it is tempting to assign the superconductivity at 250 K to 
the previously predicted Fm m3  phase2–5, there is a clear problem: the 
Fm m3  structure is predicted to be dynamically unstable over the whole 
pressure range in which a 250 K Tc has been observed. This would imply 
that the Fm m3  phase is not a minimum of the Born–Oppenheimer 
energy surface, and consequently a Tc has not been estimated for this 
phase in the experimental pressure range. The contradiction between 
the observation of superconductivity and the predicted instability of 
the Fm m3  phase may indicate a problem with the classical treatment 
of the atomic vibrations in the calculations. Considering that quantum 
proton fluctuations symmetrize hydrogen bonds in the high-pressure 
X phase of ice21 and in H3S22,23, a similar situation is expected in LaH10. 
Here we show how quantum atomic fluctuations completely reshape 
the energy landscape by removing classical local minima, rendering 
the Fm m3  phase the true ground state and the state responsible for 
the observed superconducting critical temperature.

We start by using DFT to calculate the lowest-enthalpy structures of 
LaH10 as a function of pressure, using state-of-the-art methods for the 
prediction of crystal structure24. The contribution associated with 
atomic fluctuations is not included, so that the energy corresponds 
solely to the Born–Oppenheimer energy V(R), where R represents the 
position of atoms treated classically as simple points. As shown in Fig. 1, 
different distorted phases of LaH10 are thermodynamically more stable 

than the Fm m3  phase. At pressures greater than about 250 GPa, all 
phases merge to the Fm m3   symmetric phase. These results are in agree-
ment with previous calculations2, even though we identify other pos-
sible distorted structures with lower enthalpy—such as the R m3 , C2 
and P1 (not shown) phases. These phases feature distortion not only 
in the position of the hydrogen atoms but also in the lanthanum sublat-
tice, leading to a non-fcc arrangement that should be detectable by 
X-ray analysis (see Extended Data Fig. 1). The fact that many structures 
are predicted emphasizes that the classical V(R) energy surface has a 
multifunnel structure that is tractable to many different saddle and 
local minima, as shown in Fig. 1.

This picture completely changes when we include the energy of 
quantum atomic fluctuations—the zero-point energy. We calculate the 
zero-point energy within the stochastic self-consistent harmonic 
approximation (SSCHA)25,26. The SSCHA is a variational method that 
calculates the energy of the system RE( ( )) including atomic quantum 
fluctuations as a function of the centroid positions R, which determine 
the centre of the ionic wave functions. The calculations are performed 
without approximating V(R), keeping all of its anharmonic terms. We 
perform a minimization of RE( ) and determine the centroid positions 
at its minimum. By calculating the stress tensor from RE( ) (ref. 26),  
we relax the lattice parameters in order to find structures with isotropic 
stress conditions considering quantum effects. We start the quantum 
relaxation for both R m3  and C2 phases with the lattice that yields a 
classical isotropic pressure of 150 GPa and vanishing classical forces—
that is, calculated from V(R). All quantum relaxations quickly evolve  
into the Fm m3  phase (Extended Data Fig. 4). This suggests that the quan-
tum energy RE( ( )) landscape is much simpler than the classical V(R)  
landscape, as shown in Fig. 1, and that the ground state of LaH10 over  
the pressure range of interest is the Fm m3  phase with sodalite-type  
symmetry. The quantum effects are substantial, reshaping the  
energy landscape and stabilizing structures by more than 60 meV  
per LaH10.

Our results further confirm that the Fm m3  phase of LaH10 is respon-
sible for the superconductivity at 250 K. This is consistent with the fcc 

Pressure (GPa)

E(*)V(R)

–150

–100

–50

0

125 150 200 250 300

25

La H

En
th

al
py

 (m
eV

 p
er

 L
aH

10
)

Classical description With quantum effects

Con!guration

Con!guration

Immm (71)C2 (5)

Fm3m (225)

R3m (166)a

b

Fig. 1 | Quantum effects stabilize the symmetric 
Fm m3  phase of LaH10. a, Enthalpy as a function of 
pressure for different structures of LaH10, 
neglecting zero-point energy in the calculations. 
Here, pressure is calculated classically from V(R), 
neglecting quantum effects on V(R). b, Left, a Born–
Oppenheimer energy surface V(R), exemplifying 
the presence of many local minima belonging to 
distorted structures. R represents the positions of 
atoms treated classically as simple points. Right, the 
configurational energy surface RE ( ), including 
quantum effects. R represents the quantum 
centroid positions, which determine the centre of 
the ionic wave functions—that is, the average atomic 
positions. By including quantum effects, all phases 
collapse to a single phase: the highly symmetric 
Fm m3 .

Nature | Vol 578 | 6 February 2020 | 67

On the basis of the unit cell volume obtained by X-ray diffraction, the 
hydrogen-to-lanthanum ratio was estimated to be between 9 and 12. 
The lanthanum atoms adopted a face-centred cubic (fcc) arrangement 
at pressures greater than about 160 GPa, whereas at lower pressures 
the lattice was rhombohedral with a lanthanum sublattice of the R m3  
space group. Owing to the small X-ray cross-section of hydrogen, it is 
not experimentally possible to resolve the hydrogen sublattice directly. 
More recently, evidence of a superconducting transition at 260 K and 
188 GPa was reported in a lanthanum superhydride4,20. These findings 
were subsequently confirmed by the measurement of a Tc of 250 K from 
137 to 218 GPa in a structure with an fcc arrangement of the lanthanum 
atoms, suggesting a LaH10 stoichiometry5.

Although it is tempting to assign the superconductivity at 250 K to 
the previously predicted Fm m3  phase2–5, there is a clear problem: the 
Fm m3  structure is predicted to be dynamically unstable over the whole 
pressure range in which a 250 K Tc has been observed. This would imply 
that the Fm m3  phase is not a minimum of the Born–Oppenheimer 
energy surface, and consequently a Tc has not been estimated for this 
phase in the experimental pressure range. The contradiction between 
the observation of superconductivity and the predicted instability of 
the Fm m3  phase may indicate a problem with the classical treatment 
of the atomic vibrations in the calculations. Considering that quantum 
proton fluctuations symmetrize hydrogen bonds in the high-pressure 
X phase of ice21 and in H3S22,23, a similar situation is expected in LaH10. 
Here we show how quantum atomic fluctuations completely reshape 
the energy landscape by removing classical local minima, rendering 
the Fm m3  phase the true ground state and the state responsible for 
the observed superconducting critical temperature.

We start by using DFT to calculate the lowest-enthalpy structures of 
LaH10 as a function of pressure, using state-of-the-art methods for the 
prediction of crystal structure24. The contribution associated with 
atomic fluctuations is not included, so that the energy corresponds 
solely to the Born–Oppenheimer energy V(R), where R represents the 
position of atoms treated classically as simple points. As shown in Fig. 1, 
different distorted phases of LaH10 are thermodynamically more stable 

than the Fm m3  phase. At pressures greater than about 250 GPa, all 
phases merge to the Fm m3   symmetric phase. These results are in agree-
ment with previous calculations2, even though we identify other pos-
sible distorted structures with lower enthalpy—such as the R m3 , C2 
and P1 (not shown) phases. These phases feature distortion not only 
in the position of the hydrogen atoms but also in the lanthanum sublat-
tice, leading to a non-fcc arrangement that should be detectable by 
X-ray analysis (see Extended Data Fig. 1). The fact that many structures 
are predicted emphasizes that the classical V(R) energy surface has a 
multifunnel structure that is tractable to many different saddle and 
local minima, as shown in Fig. 1.

This picture completely changes when we include the energy of 
quantum atomic fluctuations—the zero-point energy. We calculate the 
zero-point energy within the stochastic self-consistent harmonic 
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we relax the lattice parameters in order to find structures with isotropic 
stress conditions considering quantum effects. We start the quantum 
relaxation for both R m3  and C2 phases with the lattice that yields a 
classical isotropic pressure of 150 GPa and vanishing classical forces—
that is, calculated from V(R). All quantum relaxations quickly evolve  
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landscape, as shown in Fig. 1, and that the ground state of LaH10 over  
the pressure range of interest is the Fm m3  phase with sodalite-type  
symmetry. The quantum effects are substantial, reshaping the  
energy landscape and stabilizing structures by more than 60 meV  
per LaH10.

Our results further confirm that the Fm m3  phase of LaH10 is respon-
sible for the superconductivity at 250 K. This is consistent with the fcc 

Pressure (GPa)

E(*)V(R)

–150

–100

–50

0

125 150 200 250 300

25

La H

En
th

al
py

 (m
eV

 p
er

 L
aH

10
)

Classical description With quantum effects

Con!guration

Con!guration

Immm (71)C2 (5)

Fm3m (225)

R3m (166)a

b

Fig. 1 | Quantum effects stabilize the symmetric 
Fm m3  phase of LaH10. a, Enthalpy as a function of 
pressure for different structures of LaH10, 
neglecting zero-point energy in the calculations. 
Here, pressure is calculated classically from V(R), 
neglecting quantum effects on V(R). b, Left, a Born–
Oppenheimer energy surface V(R), exemplifying 
the presence of many local minima belonging to 
distorted structures. R represents the positions of 
atoms treated classically as simple points. Right, the 
configurational energy surface RE ( ), including 
quantum effects. R represents the quantum 
centroid positions, which determine the centre of 
the ionic wave functions—that is, the average atomic 
positions. By including quantum effects, all phases 
collapse to a single phase: the highly symmetric 
Fm m3 .

SSCHA

Errea et al. Nature (2020)

Ion Errea Lecture 2 37 / 38



Take-home message

1 The SSCHA is a variational method based on the thermodynamic free energy

2 The SSCHA can deal with strong anharmonicity in the non-perturbative regime

3 The SSCHA can relax structures, both internal and cell parameters, in the
quantum anharmonic energy landscape

4 SSCHA auxiliary frequencies are related to the width of the ionic wave function
(probability distribution) and are not in principle physically relevant quantities

5 So far the SSCHA does not describe anharmonic phonon linewidths

6 Lectures 3 and 4 will clarify a lot these issues
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