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Two different regimes for anharmonicity

V(R) = Vo + Va(R)+V3(R) + V4(R) + ...

@ Non-perturbative regime:

@ Perturbative regime:
V3(R) + Va(R) +--- ~ V2(R)

V3(R) + V4(R) + KL VQ(R)

Energy
Energy

Displacement Displacement
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Self-energy and the Dyson equation

@ The effect of anharmonicity (and any other interaction) can be included within
many-body perturbation theory in the displacement correlation function or Green's

function
Gab(2) = =/ MaMy (T:ua(2)us(0)) ,,,
where now H includes anharmonic interactions
@ All the interactions affecting the phonons define the phonon self energy IN

@ The interacting Green function can be calculated through Dyson's equation
G(z) = G°(z) + G°(z)N(2)G(2)

@ The non-interacting Green's function is calculated with the harmonic Hy

G(2) G(z) G%2) G(2)
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anharmonic self-energy in the perturbative limit

@ At the perturbative lowest order there
are 3 diagrams that contribute to the

phonon self-energy: tadpole (T), loop ,’”\\ /'_\\
(L), and bubble (B) A T
\ ! . 1 PEiaiai <
@ The self-energy diagrams need to be \',' '\\ ) __." \.__
constructed with Feyman diagram e - ‘_\.,1'_ ) e 7
rules and have to be calculated with ) ) ®)
Matsubara summation techniques (see
Mahan book)
@ These are the self-energy terms
(n ~2u,(q) © 2ng(w,(q)) + 1
Mu(@) = —— > B (4. 0.0) 3,0 -0
vv'q’
0) wi(q) =@
Mua) = 24050 (0 -a.¢ . ~a)@ns(w(a) + 1)
vq’

(B) . —w S .
Mugwtin) = D S0 (a.0.~a— @ )Ftinwld).w(-a-q)

vu'q’

lon Errea Lecture 2 5/38



The anharmonic self-energy in the perturbative limit

@ In the equation above

n)
(é;) (q q) . Z ¢al»-»a,,(q7"' aqn) ezll(_ql)"'elatZ(_qn)
s llp 1 sy Hn -
e VMo Ma, /270, (1) - w1, (4,,)

ay-an
2(w1 4 w2)(1 + ng(wi1) + n(w2))
(@1 +w2)? — (@ + )’
2(w1 — w2)(ns(w2) — na(w1))
(w1 — w2)? — (w + in)?
and the phonon frequencies and polarization vectors are the eigenvalues and
eigenvectors of the harmonic dynamical matrix:

Flw+ in,wi,w) =

+

Z m q) = w2 (a)el ()

@ These force constansts are derivatives of the Born-Oppenheimer potential
calculated at the Ry positions that minimize it:

(55) _ L(R)
awan | 9R, -+ ORa, R=R,

lon Errea Lecture 2 6/38



The spectral function in t

perturbative limit

@ Experimental signals are proportional to the spectral function

o(q,w) = —% Zlm[Gaa(qaw +in)]

[
|
~2Im[TL, (¢, 0,@))/ 2w, @) k—
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o(q, w) \ o(g, )
Interacting ‘;’ )\‘ Harmonic

Non-interacting
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Obtaining 3rd and 4th order force-constants is complex

(g)) _ 9"V(R)
aj-ran aRal .. 'aRa,, R=R,

@ Density Functional Perturbation Theory and the 2n + 1 theorem to obtain 3rd
order force-constants
Paulatto et al., PRB (2013)

@ Finite difference approaches (very tedious)
Errea et al., PRL (2011)

@ Empirical potentials
Chen et al.,, PRL (2014)

@ Compressive sensing lattice dynamics
Zhou et al., PRL (2014)
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Quantum and non-perturbative anharmonic effects

V(R)

Energy

Displacement
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Quantum and non-perturbative anharmonic effects

Classical position
Ro

l

Energy

\ 4

Displacement
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Quantum and non-perturbative anharmonic effects

A lP(R)
V(R)

Quantum position
(U|R|T)
Classical position
Ry

|

Energy

Displacement
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Quantum and non-perturbative anharmonic effects

A lP(R)
V(R)

Quantum position
(U|R|T)
Classical position
Ry

l

Displacement

Energy
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Non-perturbative anharmonic regime occurs in many
systems

Compounds with light atoms : :
_ Second-order structural displacive
Hydrogen storage materials .- .
phase transitions in

°

@ Hydrogen-based superconductors
°

(]

@ Charge-density wave (CDW)
materials

Hydrogen at high pressures

Ferroelectrics

At very high temperatures

@ Close to melting

Multiferroics

o
@ Thermoelectrics
o
o
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How to deal with non-perturbative anharmonicity from

first-principles

@ Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

@ Phonons from velocity autocorrelation functions
Zhang et al., PRL (2014)

@ TDEP: effective temperature dependent V, and V3 from AIMD
Hellman et al., PRB (2011)

@ Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces
@ Variational methods:

@ VSCF: Variational self-consistent field equations
Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)

@ SCHA: Minimization of the free energy with a trial harmonic density matrix
Hooton, Philos. Mag. Ser. (1955)
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How to deal with non-perturbative anharmonicity from

first-principles

@ Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

@ Phonons from velocity autocorrelation functions
Zhang et al., PRL (2014)

@ TDEP: effective temperature dependent V, and V3 from AIMD
Hellman et al., PRB (2011)

@ Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces
@ Variational methods:

@ VSCF: Variational self-consistent field equations
Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)

@ SCHA: Minimization of the free energy with a trial harmonic density matrix
Hooton, Philos. Mag. Ser. (1955)

@ SSCHA: Stochastic implementation of the SCHA
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SSCHJ

Stochastic Self-Consistent
Harmonic Approximation

sscha.eu

Journal of Physics: Condensed Matter 33, 363001 (2021)


sscha.eu

The stochastic self-consistent harmonic approximation

(SSCHA)

@ The idea of the SSCHA is to obtain the harmonic density matrix 5 that minimizes
the total free energy

~ 1, .
FIA = (Ti+ V) + 5 (np),
@ The probability distribution function that 5 defines, p=.o(R), is a Gaussian and

can be parametrized by centroid positions R and auxiliary second-order force
constants ®

@ It is like a Hartree-Fock theory but for the phonons

1/’041(’1) wal(r’\’)

1 : : :

woqnﬂn( ) o ) ' )
T VW p(r) e ()
E = (walma,,| (Te + Vee) ‘walman>
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The SSCHA is a quantum variational method

The exact problem

@ The exact density matrix

H=T:+V(R) pu=e""/zy,

@ The exact free energy

1
F=(Tit V), + 5 (nou),
4
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The SSCHA is a quantum variational method

The exact problem The variational problem

o The exact density matrix ) Trlal.dens.lty matrix gy from a trial
Hamiltonian
_ T _ o BH
H—T,+V(R) PH e /ZH H:T,-i-V(R) ﬁH:efﬂﬂ/ZH
@ The exact free energy @ The variational free energy
1
F=(T;i+V) + = {n 1 .
( Vo B {In o), ) FH =(Ti+V);, + B (Inp30) 5,
y
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The SSCHA is a quantum variational method

The exact problem The variational problem

o The exact density matrix ) Trlal.dens.lty matrix gy from a trial
Hamiltonian
_ T _ o BH ‘
H—T,+V(R) PH e /ZH H:T;-i-V(R) ﬁH:efﬂﬂ/ZH
@ The exact free energy @ The variational free energy
1
F=(T;i+V) + = {n 1 .
( Vo B {In o), ) FH =(Ti+V);, + B (Inp30) 5,
y

Variational principle

FH] > F
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The SSCHA trial Hamiltonian

The trial Hamiltonian is harmonic and is parametrized with the centroid positions
R and auxiliary second-order force constants ®

1
V(R) = 3 zb: ®.5(Rs — Ra)(Ro — Rb)
Note that this potential is different from the harmonic potential
1 (2)
Va(R) = 5 Zb ¢ ap(Ra = Roa)(Ro — Rov)

The variational free energy will depend only on R and @ so we will write
ﬁ’H — ﬁqzyq: and .7:[7'[] — ]:['R,, ¢]

@ The goal of the SSCHA is to minimize 7[R, ®] with respect to R and ®

@ It is easy to show that the SSCHA free energy can be written as

FIR,®] = Fr + (V = V)

R,

where Fy is the harmonic free energy given by the trial harmonic Hamiltonian
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The SSCHA solution in a 1D example

a ) —— Bom-Oppenheimer b) 08 —— Exact solution
®  Exact solution -=- SSCHA
40 4 Static + Harmonic 74 S LN e Harmonic
% SSCHA
06
0
. 05
> Pexact
& 20
= = os
= =
g S
&S 10 03
02
0
01
-10
00
-10 -05 00 05 10 -10 -05 00 05 10
R [Bohr] R [Bohr]
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The SSCHA probability distribution function

@ The SSCHA probability distribution function is a product of Gaussians, exactly as
the harmonic probability distribution function

pr.0(R) = (R|pr.o|R) = \/det[W " /(2m)]e™ 7 TanlRe=Ra) ¥y (Ro—R0)
S MMy elel,
— MaMbZ? a, =
I

2o 11+ 200(.)]

@ At T =0 K it equals the ground state ionic wave function

@ In the equations above the frequencies and the polarization vectors are not the
eigenvalues and eigenfunctions of the harmonic force-constants,

(2)

2 i bl

but of the auxiliary force-constants

=w,ep,
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The SSCHA probability distribution function

@ The auxiliary frequencies w, are just @ The width of the Gaussian probability

parameters that describe the SSCHA
probability distribution function, not
physical quantities, and are positive

is proportional to a

@ The higher the frequency the more

peaked the distribution, the higher the

definite by construction temperature the wider

@ The expectation value of the position . .
operator are the centroids since = 03ky7 b7 = 05

Fixed T — = T o] Fixedw — T =t

(Ripn, =R

PR,

@ In normal mode basis
(Qu=22,(Ra = Ra) k=) the
probability distribution function is

2a2

i B 1 -
Pr.o(Q) = 1:[ 7\/me = =~ L
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Quantum statistical averages

@ Given the density matrix, the quantum statistical average of any operator that just
depends on the ionic positions O(R) can be calculated as

(0 o = 1(Ofm.0) = [ dRO(R)jm.o(R)

@ An example:
The mean square displacement of an ion

<(R;,—R;,)2>~ = /dR( —R.)’pr.e(R)
Zee /dQQuQup'Rm(Q)

Z T [ 2n0()]
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F|[

@ Minimization trajectory in the parameter space (R; ®)

Ho — Hi — H> - ... = Hn
(R;®) — (Ri®):1 — (R — ... — (R;®d),

@ At the minimum

@ The eigenvalues wi and the eigenvectors ej, of ® define the renormalized probability
distribution function, not the experimental phonon frequencies

@ R are the renormalized positions at which the ionic wave function are centered (the
centroids)

o F[R,®] is a good variational approximation of the exact free energy
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F|[

@ Minimization trajectory in the parameter space (R; ®)

Ho — Hi — H> - ... = Hn
(R;®) — (Ri®):1 — (R — ... — (R;®d),

@ At the minimum

@ The eigenvalues wi and the eigenvectors ej, of ® define the renormalized probability
distribution function, not the experimental phonon frequencies

@ R are the renormalized positions at which the ionic wave function are centered (the
centroids)

o F[R,®] is a good variational approximation of the exact free energy

@ Need the gradient of the functional F[R, ®]
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The SSCHA gradients

The gradients of 7[R, ®] are

8}—[R7 (b] %
S (R - V(R
R (f(R) — £( )>m
OF[R, ®] A[0]?< v .
- = ——— ( (R(R)— 1, (R Ve (Re — Re
o > i \ (R — (R STV (R —Re) )
a € PR,
We have quantum statistical averages of BO forces f, and BO forces times
displacements. £, (R) = — ", ®.5(R» — Rs) is the force derived from the trial
potential
The A[0] tensor is
dng(w,) 2ng(wy )+1 _
abc h a b _c_d dw - 2w )Wy = Wy
/\[0] bed = e e, ey n w“ —ng(w. " ng(w ng(w,
; dw, 0, Iz Iz B( ::—wf( v) 1+ B(w:l;ls( v) Wy F W

@ With the gradients a gradient-descent minimization can be performed

@ The gradient is symmetrized at every step, so the minimization is performed

respecting the symmetries
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A preconditioned gradient descent

]

f(xX)=A+B(x—x,,,)*
AN

dx

X0 Xmin X
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A preconditioned gradient descent

-1
4 d d
oy A=Rmd < i > T — sy A 2805 )

f(xX)=A+B(x—x,,,)*

=2B (XO - xmin)

X0 Xmin X
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A preconditioned gradient descent

@ The gradient-descent is much more efficient if the descent is preconditioned and
the update of the centroids and auxiliary force constants is performed as

2 -1
(n+1) _ gy(n) O°F OF
eI =T e z; (c’)tb(’)cbab) .

-1
(n+1) _ OF
R —AR Z <8R8Ra> R,

@ The steps Ar and A¢ are adimensional

@ It can be shown that in this case

A <(fb(R) —F(R) DV e (Re - Rc)>

PR,0

R =R 4 ar 30} <fb(R) - fb"(R’)>~
b

PR.®
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The SSCHA self-consistent equation

@ The SSCHA minimization can be performed fixing R and only optimizing the
auxiliary force constants

@ In that case the SSCHA solution will obey the following self-consistent equation

2V
¢ab(R) = <8R38Rb>

@ This self-consistent equation opens a way to implement the SSCHA without using
the gradient-descent approach

Po(R)
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

(V(R) = V(R oo (B(R) = (R)) . ((H(R) ~ £(R)) (Re — Re))

PR, PR, 0

Importance sampling for the quantum statistical averages

@ Quantum statistical averages involve observables that depend on the position

(0)sr, o = tr[r.00] = [ dRO(R)j=.o(R)

PR, 0
@ Create N, ionic configurations in a supercell according to g e),(R): {Ri}i=1,...n.

@ Stochastic evaluation of the integral: (O),,, ~ N% e O(R/)

M
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

(V(R) = V(R oo (B(R) = (R)) . ((H(R) ~ £(R)) (Re — Re))

PR, PR, 0

Importance sampling for the quantum statistical averages

@ Quantum statistical averages involve observables that depend on the position

(0)sr, o = tr[r.00] = [ dRO(R)j=.o(R)

PR, 0
@ Create N, ionic configurations in a supercell according to g e),(R): {Ri}i=1,...n.

@ Stochastic evaluation of the integral: (O),,, ~ N% e O(R/)

@ Requires to evaluate forces and energies in supercells: f(R;), V(R))
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

VR = V(R o (BRI =R R)) o ((A(R)=B(R) (R=R)

R,®

Reweighting for the quantum statistical averages for CG step n > 0

@ The calculated forces and energies can be recycled throughout the CG minimization

J dRO(R)f(.0),(R) = [ ARO(R)2A=®nB 5 o) (R) =~

A(R,0)y ®P
1 N AR, o),,(R/)
Ne £~I=1 O(R )ﬁ(n,o)D(R/)

@ The reweighting procedure is valid as long as

Ne Pr.0),R)
Nc Z’ L p(r, ) (R1) 1

v
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

VR = V(R o (BRI =R R)) o ((A(R)=B(R) (R=R)

R,®

Reweighting for the quantum statistical averages for CG step n > 0

@ The calculated forces and energies can be recycled throughout the CG minimization

J dRO(R)f(.0),(R) = [ ARO(R)2A=®nB 5 o) (R) =~

A(R,0)y ®P
1 N AR, o),,(R/)
Ne £~I=1 O(R )ﬁ(n,o)D(R/)

@ The reweighting procedure is valid as long as

Ne Pr.0),R)
Nc Z’ L p(r, ) (R1) 1

@ The SSCHA can be applied at any degree of theory

@ empirical potentials
@ DFT ab initio
@ Beyond DFT (Monte Carlo, GW, ...)

v

lon Errea Lecture 2 27/38



The SSCHA coming out of statistical range

@ The SSCHA stops the minimization if
the created set of configurations no s
longer resembles j(r . o),

@ This is detected according to the 06
Kong-Liu criteria that sets the number
of effective configurations at step n

g
=04
Nc

N — 21:1 P%(I) 03

n - 2 .

(P pnlh)

0.1
where the weights are 001 ‘ _
pall) = ey L e

)o (R1)

@ If at step n N,?ff/Nc < n, where 7 is a number around 0.5, the SSCHA
minimization stops and one should create new configurations with the updated

AR,®),
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The SSCHA convergence threshold

@ The SSCHA calculation is stopped when the values of the gradients become
smaller than a ratio (9) of its estimated error

OF[R, 0] 5| A OFIR, @]
o o®
OF[R, @] 5| A OFIR, @]
IR IR

@ When this criteria is reached in both gradients the calculation is assumed to be
converged

@ The ideal thing is to use a very small § and try to reach 0 gradients
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SSCHA calculation example
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SSCHA calculation example

@ First populations with 100 configurations each

@ 6 populations to reach convergence

. . Evolution of the auxiliary frequencies
Evolution of the free energy, gradients, and y Ireq

Kong-Liu ratio

Frequcency evolution

= 12500
Z
E 10000 80000 120
= =
= 7500 £ 60000
g ® 100
<. s000 & w0000
1= = =
g 200 20000 L ow
o g
g 0 -
0 g
&
£
S
@ g
3 . 600000 S
o ® £
= g
<k
E 7 & 400000 »
< g
= £
g ® 2 200000
g £ o
& 3
= s
o 0 0 ) 6 8 100
0 5 50 7 100 0 b3 50 75 100 Good minimization steps
Good minimization steps Good minimization steps
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SSCHA calculation example

@ Add more configurations for a final run

. . Evolution of the auxiliary frequencies
Evolution of the free energy, gradients, and y Ireq

Kong-Liu ratio

Frequcency evolution

5
o
E 2002 300 120
3 =
=
o 2694 £
g ] 100
3 g
= as0s & 100
=
g 2 = [
g 0 T 8
g g
o 2608 S
8
& -100 T .
g
1000 &
£
] =
900 = 60 4
g
g ot
X |
g 40 2
o &
i LR .
5]
0 0 20 k) ) 8 100
500 N
0 2 50 7 100 0 2 50 75 100 Good minimization steps
Good minimization steps Good minimization steps
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Thermodynamic properties of PdH

1

1
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7.77]
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The optimization of the lattice in the SSCHA

@ The SSCHA can be used to relax the lattice parameters of a structure considering
quantum and thermal effects, and full anharmonicity

@ When a lattice is relaxed in standard methods the contribution of the ions to the
energy is neglected as the stress tensor is calculated from V(R)

poo _ N [OV(R)
op Q a&?a,g e=0

@ In the SSCHA we can calculate the stress tensor including ionic quantum and
thermal effects in the lattice parameters

Pap = _g {%”Z}(v]} e=0 B <P§2(R)>ﬁn,o - % s <ugfsﬁ ' Uffsa>

R, ®

@ For that, apart from forces, the classical Pfg stresses need to be calculated for
each of the structures in the ensemble
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The optimization of the lattice in the SSCHA

@ The ensemble is created with constant lattice and the lattice vectors {a;} are
updated when creating the next ensemble as

a,’-a = 3jo + )\{ai} Z&aga,'ﬁ,
B
with
(Pag = P"0agp)

=0

EapB =
@ P is the target pressure
@ The best A, step is obtained with

1
Maid = 308, By

with By the bulk modulus
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SSCHA calculation flowchart with cell relaxation

Generate the
random ensemble

Root n
P a0 - 5"
reconditionin
(n+1) (n) ¢ Vel = e g,
k3 =2 - \G VB,

Update
the lattice
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Structural relaxation with the SSCHA in LaHqg

Angle

62.50°
62.00°
61.50°
61.00°
60.50°
60.00°

59.50°

. SSCHA

R-3m Angle — ® —
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Take-home message

©0 © o000

The SSCHA is a variational method based on the thermodynamic free energy
The SSCHA can deal with strong anharmonicity in the non-perturbative regime

The SSCHA can relax structures, both internal and cell parameters, in the
quantum anharmonic energy landscape

SSCHA auxiliary frequencies are related to the width of the ionic wave function
(probability distribution) and are not in principle physically relevant quantities

So far the SSCHA does not describe anharmonic phonon linewidths

Lectures 3 and 4 will clarify a lot these issues
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