
  

Lecture 3:

Second-order phase transitions in the SSCHA

Raffaello Bianco



  

The exact system:

Free Energy

Self-Consistent Harmonic Approximation



  

The exact system:

Free Energy

Self-Consistent Harmonic Approximation

The harmonic trial system:

Quadratic potential centroid
(average atomic configuration)

Trial variabiles:

Quadratic potential amplitude (positive definite)
(related to the amplitude of the trial ground-state wfc)
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Free energy estimate

SCHA effective harmonic Hamiltonian
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NOT generalized/effective
        “phonons”



  

The exact system:

Self-Consistent Harmonic Approximation

The harmonic trial system:

Free energy estimate

SCHA effective harmonic Hamiltonian

Physical meaning?

NOT generalized/effective 
        “dynamical matrix”

NOT generalized/effective
        “phonons”

Positive definite NO imaginary frequencies

NO structural instability



  

The exact system:

Self-Consistent Harmonic Approximation

The harmonic trial system:

Free energy estimate

SCHA effective harmonic Hamiltonian

Physical meaning?

Positional free energy 
(free energy as a function of average atomic config.)

Fundamental concept:

Of course...



  

2nd order displacive phase transitions: Landau picture
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2nd order displacive phase transitions: Landau picture
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Generalization of the harmonic dynamical matrix

Quantum nature of nuclei 
taken into account



  

Generalization of the harmonic dynamical matrix

Thermal fluctuations
taken into account
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Free energy Hessian & 2nd order phase transitions

Free energy Hessian
Generalization of the harmonic dynamical matrix

Quantum, thermal, anharmonic effects included



  

How to study displacive second-order phase transitions 

Compute

as a function T

Critical value T
c

(temperature at which phonon goes imaginary)

Displacement pattern 
(imaginary-phonon eigenmode)

Displacive second-order phase transition characterization:

Go from real to reciprocal space (Fourier transform) and diagonalize:
    
                  generalized phonon dispersion
 as a function of T



  

…not only temperature! 

Analogous approach works more in general for the Gibbs free energy:

Critical value of  external parameter (T
c
 or P

c
) 

(phonon goes imaginary)

Displacement pattern 
(imaginary-phonon eigenmode)

Displacive second-order phase transition:

Generalized phonon dispersion
(as a function of T or P)



  

Temperature-dependent harmonic free-energy Hessian 

Harmonic phonon dispersion as a function of temperature
(computed with Fermi-Dirac electron smearing)

An approach sometimes used
to estimate T

c
 of 2nd order phase transitions:



  

Temperature-dependent harmonic free-energy Hessian 

Harmonic phonon dispersion as a function of temperature
(computed with Fermi-Dirac electron smearing)

This approach discards:

                      Quantum nature of nuclei 

                      Nuclei contribution to entropy
                      (only electron entropy is included)

An approach sometimes used
to estimate T

c
 of 2nd order phase transitions:

This typically leads to significant errors...an example will be shown later
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SCHA Free energy Hessian
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SCHA Free energy Hessian

SCHA matrix

density matrix of



  

density matrix of

SCHA Free energy Hessian

SCHA matrix

How to compute them?

(direct stochastic approach ruled out)



  

High-order FCs: stochastic approach 



  

High-order FCs: stochastic approach 

normal distribution

With integration by parts ...



  

High-order FCs: stochastic approach 

Forces

Linear functions
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High-order FCs: stochastic approach 

Stochastic approach suited

generated according toPopulation

and forcesCompute total energy 



  

Exploiting lattice-translation symmetry...

Fourier trans.



  

Exploiting lattice-translation symmetry...

Fourier trans.

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone



  

Exploiting lattice-translation symmetry...

Fourier trans.

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone
In the SCHA modes basis set is (discarding 4th order derivative terms...):



  

Exploiting lattice-translation symmetry...

Fourier trans.

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone
In the SCHA modes basis set is (discarding 4th order derivative terms...):



  

Exploiting lattice-translation symmetry...

Fourier trans.

Integration on a fine k grid of N
k
 points (towards convergence)

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone
In the SCHA modes basis set is (discarding 4th order derivative terms...):



  

Exploiting lattice-translation symmetry...

Fourier trans.

Pseudomomentum conservation

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone
In the SCHA modes basis set is (discarding 4th order derivative terms...):



  

Exploiting lattice-translation symmetry...

Fourier trans.

Fourier trans.

(after centering)

At this level, is defined only on a q-grid commensurate with the used supercell 

But we can use Fourier interpolation and write it for any q point of the Brillouin zone
In the SCHA modes basis set is (discarding 4th order derivative terms...):



  

Free Energy Hessian: a tool to characterize 2nd order displacive phase transitions

Compute and diagonalize

as a function of external parameter (e.g. T or P)

Critical value of  external parameter (e.g. T
c
 or P

c
) 

(phonon goes imaginary)

Displacement pattern of
(imaginary-phonon eigenmode)

Displacive second-order phase transition:

Generalized phonon dispersion
(as a function of T, P, ...)



  

Free Energy Hessian: a tool to characterize 2nd order displacive phase transitions

Compute and diagonalize

as a function of external parameter (e.g. T or P)

Critical value of  external parameter (e.g. T
c
 or P

c
) 

(phonon goes imaginary)

Displacement pattern of
(imaginary-phonon eigenmode)

Displacive second-order phase transition:

Generalized phonon dispersion
(as a function of T, P, ...)

Some examples...



  

Low dimensionality effects on CDW 

Stronger fluctuations 
from finite temperature

Reduced screening
Stronger electron-phonon coupling

Long-range CDW order

FavoredDisfavored
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1H-TaSe
2

1H-TaS
2
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1H-NbS
2

         CDW 
mono w.r.t. bulk

Unchanged Vanishes Controversial Controversial

1H-NbSe
2

1H-NbS
2

Controversial Controversial



  

Low dimensionality effects on CDW 

Stronger fluctuations 
from finite temperature

Reduced screening
Stronger electron-phonon coupling

Long-range CDW order

FavoredDisfavored

VS

1H-TaSe
2

1H-TaS
2

1H-NbS
2

1H-NbS
2

         CDW 
mono w.r.t. bulk

Unchanged Vanishes Controversial Controversial

1H-NbSe
2

1H-NbS
2
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NbS
2

Bulk: No CDW instability 

Phonon dispersion including quantum anharmonic effects

Suspended monolayer: 3x3 CDW distortion

Quantum anharmonic effects are relevant...!



  

NbS
2
: bulk

Harmonic2 K300 K
X-ray experiment

300 K 0 K

Anharmonic (SSCHA)

q  3x3x1≃

Harmonic dispersion:

● No temperature dependence
● Wrong instability



  

NbS
2
: monolayer

P = 0.66 GPa

Harmonic Anharmonic 0K(SSCHA)

● Structure compressed less than 0.5%
      (still compatible with exp. Estimates)

● No effect at harmonic level

No CDW



  

SCHA phonon dispersion as a function of T

NbSe
2

Bulk

R. Bianco et al., PRL 125, 106101 (2020) 



  

SCHA phonon dispersion as a function of T

NbSe
2

Bulk

Phonon softening at the
correct CDW spatial modulation (3x3x1)

Harmonic calculation reproduces the 
correct CDW spatial modulation too, 
but wrong T

c 
...R. Bianco et al., PRL 125, 106101 (2020) 



  

NbSe
2

R. Bianco et al., PRL 125, 106101 (2020) 

Softening of ω2(T) for q=3x3

Harmonic approximation: 

Electronic temperature only

Nuclei contribution to entropy neglected



  

NbSe
2

Harmonic approximation: 

Electronic temperature only

Nuclei contribution to entropy neglected

SCHA approximation:

Nuclei and electronic temperature

Nuclei and electronic contribution to entropy

R. Bianco et al., PRL 125, 106101 (2020) 

Softening of ω2(T) for q=3x3



  

NbSe
2

Softening of ω2(T) for q=3x3

R. Bianco et al., PRL 125, 106101 (2020) 



  

3x3x1

3x3

SSCHA phonon dispersion as a function of T

Bulk

Monolayer

NbSe
2

R. Bianco et al., PRL 125, 106101 (2020) 



  

NbSe
2
: bulk and monolayer

Monolayer Th.  
Bulk Th.
Bulk Exp.

R. Bianco et al., PRL 125, 106101 (2020) 

Harmonic 
Electronic Only

SCHA 
Electronic + Ionic

Softening of ω2(T) for q=3x3



  

Softening of ω2(T) for q=3x3

NbSe
2
: bulk and monolayer

Monolayer Th.  
Bulk Th.
Bulk Exp.

R. Bianco et al., PRL 125, 106101 (2020) 

Harmonic 
Electronic Only

SCHA 
Electronic + Ionic

Ionic fluctuations dominate 
over electronic fluctuations

Weak dimensionality dependence 

In the CDW transition of NbSe
2
:



  

Superconductivity: the T
c
 history

LaH
10

H
3
S



  

Superconductivity: the T
c
 history

LaH
10

H
3
S

(P≃140 GPa) Fm3m

(P≃150 GPa) Im3m

Protons have large zero-point energy: 
the quantum nature of hydrogen cannot be neglected

!



  

At harmonic level: 

the structure becomes stable only above 220-250 GPa 

below this pressure, large instabilities in several regions of the Brillouin zone   

LaH
10

 Phonon dispersion in the Fm3m phase
(m

eV
)

129 GPa 163 GPa 214 GPa 264 GPa

harmonic
quantum anharmonic

Increasing pressure

Errea et al., Nature 578, 66 (2020) 



  

Harmonic phonons (classical) 

H
3
S: the Im3m phase

Quantum anharmonic effects 
neglected

High-symmetry phase
unstable

  Im3m            P=150 GPa

(m
eV

)

R. Bianco et al., Physical Review B 97, 2018 



  

Squared optical phonon freq. in (103 meV2)

P (GPa)
(m

eV
)

P
c
= 173 GPa

Harmonic phonons (classical) 

  Im3m            P=150 GPa

R. Bianco et al., Physical Review B 97, 2018 

H
3
S: the Im3m phase



  

P
c
= 173 GPa

Harmonic phonons (classical) 

P
c
= 91 GPa

  Im3m            P=150 GPa

Quantum anharmonic phonons 

Squared optical phonon freq. in (103 meV2)

(m
eV

)

R. Bianco et al., Physical Review B 97, 2018 

H
3
S: the Im3m phase



  

  Im3m            P=150 GPa

Quantum anharmonic phonons 
Quantum anharmonic effects 

included

High-symmetry phase
stable

(m
eV

)

R. Bianco et al., Physical Review B 97, 2018 

H
3
S: the Im3m phase



  

A sneak peek of Lecture 4

Generalized phonon dispersion
(as a function of T, P, ...)



  

Generalized phonon dispersion
(as a function of T, P, ...)

“Static” phonon theory

Infinite lifetime

No phonon damping

!

A sneak peek of Lecture 4



  

Generalized phonon dispersion
(as a function of T, P, ...)

“Static” phonon theory

Infinite lifetime

No phonon damping

!

A dynamic theory needs to be introduced….

A sneak peek of Lecture 4
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