SSCHA School 2023

Lecture 3:

Second-order phase transitions in the SSCHA

Raffaello Bianco

Self-Consistent Harmonic Approximation

The exact system:
$H=K+V(R)$
$\rho \propto \exp (-\beta H)$

$$
\begin{gathered}
\text { Free Energy } \\
F=\operatorname{Tr}[\rho H]+\frac{1}{\beta} \operatorname{Tr}[\rho \ln \rho]
\end{gathered}
$$

Self-Consistent Harmonic Approximation

The exact system:

$$
\begin{array}{ll}
H=K+V(R) & H_{\mathcal{R}, \Phi}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R}) \\
\rho \propto \exp (-\beta H) & \rho_{\mathcal{R}, \Phi} \propto \exp \left(-\beta H_{\mathcal{R}, \Phi}\right)
\end{array}
$$

$$
\begin{gathered}
\text { Free Energy } \\
F=\operatorname{Tr}[\rho H]+\frac{1}{\beta} \operatorname{Tr}[\rho \ln \rho]
\end{gathered}
$$

Trial variabiles:
$\mathcal{R} \quad$ Quadratic potential centroid (average atomic configuration)
Φ Quadratic potential amplitude (positive definite) (related to the amplitude of the trial ground-state wfc)

Self-Consistent Harmonic Approximation

The exact system:

$$
\begin{array}{ll}
\text { The exact system: } & \text { The harmonic trial system: } \\
H=K+V(R) & H_{\mathcal{R}, \Phi}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R}) \\
\rho \propto \exp (-\beta H) & \rho_{\mathcal{R}, \Phi} \propto \exp \left(-\beta H_{\mathcal{R}, \Phi}\right)
\end{array}
$$

$$
\begin{gathered}
\text { Free Energy } \\
F=\operatorname{Tr}[\rho H]+\frac{1}{\beta} \operatorname{Tr}[\rho \ln \rho]
\end{gathered}
$$

Free Energy Functional

$$
\mathcal{F}(\mathcal{R}, \Phi)=\operatorname{Tr}\left[\rho_{\mathcal{R}, \Phi} H\right]+\frac{1}{\beta} \operatorname{Tr}\left[\rho_{\mathcal{R}, \Phi} \ln \rho_{\mathcal{R}, \Phi}\right]
$$

Self-Consistent Harmonic Approximation

The exact system:
$H=K+V(R)$
$\rho \propto \exp (-\beta H)$

The harmonic trial system:
$H_{\mathcal{R}, \Phi}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\rho_{\mathcal{R}, \Phi} \propto \exp \left(-\beta H_{\mathcal{R}, \Phi}\right)$

$$
\begin{gathered}
\text { Free Energy } \\
F=\operatorname{Tr}[\rho H]+\frac{1}{\beta} \operatorname{Tr}[\rho \ln \rho]
\end{gathered}
$$

Free Energy Functional

$$
\mathcal{F}(\mathcal{R}, \Phi)=\operatorname{Tr}\left[\rho_{\mathcal{R}, \Phi} H\right]+\frac{1}{\beta} \operatorname{Tr}\left[\rho_{\mathcal{R}, \Phi} \ln \rho_{\mathcal{R}, \Phi}\right]
$$

$$
\mathcal{F}(\mathcal{R}, \Phi) \xrightarrow{\text { Minim. w.r.t }(\mathcal{R}, \Phi)} \mathcal{F}\left(\mathcal{R}^{\text {MIN }}, \Phi^{\text {MIN }}\right) \simeq F
$$

Self-Consistent Harmonic Approximation

The exact system:
$H=K+V(R)$
$\rho \propto \exp (-\beta H)$

The harmonic trial system:
$H_{\mathcal{R}, \Phi}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\rho_{\mathcal{R}, \Phi} \propto \exp \left(-\beta H_{\mathcal{R}, \Phi}\right)$

Free energy estimate
$F \simeq \mathcal{F}\left(\mathcal{R}^{\mathrm{MIN}}, \Phi^{\mathrm{MIN}}\right)$
SCHA effective harmonic Hamiltonian

$$
H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}}\right) \cdot \Phi^{\mathrm{MIN}} \cdot\left(R-\mathcal{R}^{\mathrm{MIN}}\right)
$$

The harmonic trial system:

$\rho \propto \exp (-\beta H)$ $\rho_{\mathcal{R}, \Phi} \propto \exp \left(-\beta H_{\mathcal{R}, \Phi}\right)$

Free energy estimate

Physical meaning?

$H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}} \Phi^{\mathrm{MIN}}\left(R-\mathcal{R}^{\mathrm{MIN}}\right)\right.$

$$
\mathcal{R}^{\mathrm{MIN}}=\mathcal{R}_{\mathrm{eq}}
$$

Average configuration of the atoms at equilibrium

Physical meaning?

$H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}} \Phi^{\mathrm{MIN}}\left(R-\mathcal{R}^{\mathrm{MIN}}\right)\right.$

$\Phi^{\mathrm{MIN}}=\Phi$

Physical meaning?

$H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}} \Phi^{\mathrm{MIN}}\left(R-\mathcal{R}^{\mathrm{MIN}}\right)\right.$

$\Phi^{\mathrm{MIN}}=\Phi$

$$
D^{(\mathrm{SCHA})}=\frac{\Phi}{\sqrt{M M}}
$$

NOT generalized/effective "dynamical matrix"

NOT generalized/effective "phonons"
$D^{\text {(SCHA) }}$ Positive definite $\quad \Rightarrow \quad$ NO imaginary frequencies

NO structural instability

Physical meaning?

$H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}} \Phi^{\mathrm{MIN}}\left(R-\mathcal{R}^{\mathrm{MIN}}\right)\right.$

Fundamental concept:
Positional free energy
(free energy as a function of average atomic config.)

$$
F(\mathcal{R})=\min _{\Phi} \mathcal{F}(\mathcal{R}, \Phi)
$$

Of course...

$$
F=\min _{\mathcal{R}} F(\mathcal{R})=F\left(\mathcal{R}_{\mathrm{eq}}\right)
$$

Physical meaning?

$H^{\mathrm{SCHA}}=K+\frac{1}{2}\left(R-\mathcal{R}^{\mathrm{MIN}} \Phi^{\mathrm{MIN}}\left(R-\mathcal{R}^{\mathrm{MIN}}\right)\right.$

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$T>T_{c}$
System in equilibrium at $\boldsymbol{\mathcal { R }}_{\mathrm{hs}}$

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$2^{\text {nd }}$ order displacive phase transitions: Landau picture

$$
\begin{aligned}
& \mathrm{T}>\mathrm{T}_{\mathrm{c}} \\
& \text { System in equilibrium } \\
& \text { at } \mathcal{R}_{\mathrm{hs}} \\
& \mathrm{~T}=\mathrm{T}_{\mathrm{c}} \\
& \text { Instability appears } \\
& \\
& \mathrm{T}<\mathrm{T}_{\mathrm{c}} \\
& 2^{\text {nd }} \text { order phase trans. } \\
& \text { to new eq. config. }
\end{aligned}
$$

$$
\mathcal{R}-\mathcal{R}_{\mathrm{hs}} \text { (a.u.) }
$$

Negative eigenvalue $\mathcal{R}_{\mathrm{hs}}$ (along instability mode)

Free energy Hessian

 Generalization of the harmonic dynamical matrix
Generalization of the harmonic dynamical matrix

$$
\begin{gathered}
\frac{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} V}{\partial R \partial R}\right|_{R_{\mathrm{eq}}}}{D^{(\text {Harm })}} \frac{\sqrt{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}} D^{(\mathrm{F})}}{F=E-T S} \\
F
\end{gathered}
$$

Generalization of the harmonic dynamical matrix

$$
\begin{aligned}
& \frac{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} V}{\partial R \partial R}\right|_{R_{\mathrm{eq}}}}{D^{(\text {Harm })}} \frac{D^{(\mathrm{F})}}{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}} \\
& F=E-T S \\
& V \Longrightarrow E=\langle K\rangle+\langle V\rangle \\
& \begin{array}{c}
\text { Quantum nature of nuclei } \\
\text { taken into account }
\end{array}
\end{aligned}
$$

Generalization of the harmonic dynamical matrix

$$
\begin{aligned}
& \frac{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} V}{\partial R \partial R}\right|_{R_{\mathrm{eq}}}}{D^{(\mathrm{Harm})}} \frac{D^{(\mathrm{F})}}{\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}} \\
& F=E-T S \\
& V E E=\langle K\rangle+\langle V\rangle \\
& V E E-T S
\end{aligned}
$$

Thermal fluctuations taken into account

Free energy Hessian Generalization of the harmonic dynamical matrix

Quantum, thermal, anharmonic effects included

How to study displacive second-order phase transitions

- Compute

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{R_{\mathrm{hs}}} \quad \text { as a function } \mathrm{T}
$$

- Go from real to reciprocal space (Fourier transform) and diagonalize:

```
generalized phonon dispersion }\mp@subsup{\omega}{\mu}{}(q
    as a function of T
```

- Displacive second-order phase transition characterization:
- Critical value T_{c} (temperature at which phonon goes imaginary)
- Displacement pattern (imaginary-phonon eigenmode)

...not only temperature!

- Analogous approach works more in general for the Gibbs free energy:

$$
\left.\frac{1}{\sqrt{\pi \mathcal{T} \tau}} \frac{\partial^{2} G}{\partial \mathcal{P} \partial \mathcal{D}} \right\rvert\, \quad G=E-T S+P V
$$

Generalized phonon dispersion $\omega_{\mu}(q)$ (as a function of T or P)

Displacive second-order phase transition:

Critical value of external parameter (\boldsymbol{T}_{c} or \boldsymbol{P}_{c}) (phonon goes imaginary)

Displacement pattern (imaginary-phonon eigenmode)

Temperature-dependent harmonic free-energy Hessian

An approach sometimes used to estimate T_{c} of $2^{\text {nd }}$ order phase transitions:

Harmonic phonon dispersion as a function of temperature (computed with Fermi-Dirac electron smearing)

Temperature-dependent harmonic free-energy Hessian

An approach sometimes used to estimate T_{c} of $2^{\text {nd }}$ order phase transitions:

Harmonic phonon dispersion as a function of temperature (computed with Fermi-Dirac electron smearing)

- This approach discards:

Quantum nature of nuclei
Nuclei contribution to entropy (only electron entropy is included)

This typically leads to significant errors...an example will be shown later

SCHA Free energy Hessian

$$
\frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}=\Phi+\stackrel{(3)}{\Phi}: \Lambda:[\mathbb{1}-\Lambda: \stackrel{(4)}{\Phi}]^{-1}: \stackrel{(3)}{\Phi}
$$

density matrix of $H^{\mathrm{SCHA}}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\langle O(R)\rangle_{\rho \Phi}=\int d R(\overbrace{}^{\prime})$

SCHA Free energy Hessian

density matrix of $H^{\mathrm{SCHA}}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\langle O(R)\rangle_{\rho_{\Phi}}=\int d R(\overbrace{}^{\rho}$

SCHA Free energy Hessian

density matrix of $H^{\mathrm{SCHA}}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\langle\mathcal{O}(R)\rangle_{\rho_{\otimes}}=\int d R \mathcal{O}(R) \overbrace{\rho_{\Phi}(R)}$

SCHA Free energy Hessian

density matrix of $H^{\mathrm{SCHA}}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\langle\mathcal{O}(R)\rangle_{\rho_{\phi}}=\int d R \mathcal{O}(R) \overbrace{\rho_{\Phi}(R)}$

SCHA Free energy Hessian

$\Lambda^{a b c d}=\sum_{\mu \nu} \mathcal{F}\left(\omega_{\mu}, \omega_{\nu}\right) e_{\mu}^{a} e_{\nu}^{b} e_{\mu}^{c} e_{\nu}^{d}$

SCHA Free energy Hessian

$$
\begin{array}{ll}
\Lambda^{a b c d}=\sum_{\mu \nu} \mathcal{F}\left(\omega_{\mu}, \omega_{\nu}\right) e_{\mu}^{a} e_{\nu}^{b} e_{\mu}^{c} e_{\nu}^{d} & n_{\mu}=\frac{1}{e^{\beta \omega_{\mu}}-1} \\
\mathcal{F}\left(\omega_{\mu}, \omega_{\nu}\right)=\frac{\hbar}{4 \omega_{\nu} \omega_{\mu}}\left[\frac{\left(\omega_{\mu}-\omega_{\nu}\right)\left(n_{\mu}-n_{\nu}\right)}{\left(\omega_{\mu}-\omega_{\nu}\right)^{2}}-\frac{\left(\omega_{\mu}+\omega_{\nu}\right)\left(1+n_{\mu}+n_{\nu}\right)}{\left(\omega_{\mu}+\omega_{\nu}\right)^{2}}\right] &
\end{array}
$$

SCHA Free energy Hessian

density matrix of $H^{\mathrm{SCHA}}=K+\frac{1}{2}(R-\mathcal{R}) \cdot \Phi \cdot(R-\mathcal{R})$
$\langle\mathcal{O}(R)\rangle_{\rho_{\otimes}}=\int d R \mathcal{O}(R) \overbrace{\rho_{\Phi}(R)}$

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int \frac{\partial^{3} V}{\partial R \partial R \partial R} \rho_{\Phi}(R) d R \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int \frac{\partial^{4} V}{\partial R \partial R \partial R \partial R} \rho_{\Phi}(R) d R
\end{aligned}
$$

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int \frac{\partial^{3} V}{\partial R \partial R \partial R} \rho_{\Phi}(R) d R \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int \frac{\partial^{4} V}{\partial R \partial R \partial R \partial R} \rho_{\Phi}(R) d R
\end{aligned}
$$

With integration by parts ...

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int{\stackrel{(3)}{\mathbb{G}}(R, V(R), \mathrm{f}(R)) \rho_{\Phi}(R) d R}^{\left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\int \stackrel{(4)}{\mathbb{G}}(R, V(R), \mathrm{f}(R)) \rho_{\Phi}(R) d R}
\end{aligned}
$$

Forces $\mathrm{f}=-\partial V / \partial R$
 Linear functions

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(3)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}} \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(4)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}}
\end{aligned}
$$

Stochastic approach suited

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(3)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}} \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(4)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}}
\end{aligned}
$$

Stochastic approach suited

Population $\left\{R_{\mathcal{I}}\right\}_{\mathcal{I}=1}^{\mathcal{N}}$ generated according to $\rho_{\Phi}(R)$

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(3)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}} \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(4)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}}
\end{aligned}
$$

Stochastic approach suited

Population $\left\{R_{\mathcal{I}}\right\}_{\mathcal{I}=1}^{\mathcal{N}}$ generated according to $\rho_{\Phi}(R)$

Compute total energy $\left\{V\left(R_{\mathcal{I}}\right)\right\}_{\mathcal{I}=1}^{\mathcal{N}}$ and forces $\left\{\mathrm{f}\left(R_{\mathcal{I}}\right)\right\}_{\mathcal{I}=1}^{\mathcal{N}}$

High-order FCs: stochastic approach

$$
\begin{aligned}
& \left\langle\frac{\partial^{3} V}{\partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\langle\stackrel{(3)}{\mathbb{G}}(R, V(R), \mathrm{f}(R))\rangle_{\rho_{\Phi}} \\
& \left\langle\frac{\partial^{4} V}{\partial R \partial R \partial R \partial R}\right\rangle_{\rho_{\Phi}}=\left\langle{ }^{(4)}(R, V(R), \mathrm{f}(R))\right\rangle_{\rho_{\Phi}}
\end{aligned}
$$

Stochastic approach suited

Population $\left\{R_{\mathcal{I}}\right\}_{\mathcal{I}=1}^{\mathcal{N}}$ generated according to $\rho_{\Phi}(R)$

Compute total energy $\left\{V\left(R_{\mathcal{I}}\right)\right\}_{\mathcal{I}=1}^{\mathcal{N}}$ and forces $\left\{\mathrm{f}\left(R_{\mathcal{I}}\right)\right\}_{\mathcal{I}=1}^{\mathcal{N}}$

$$
\left\langle\mathbb{G}(R, V(R), \mathrm{f}(R)\rangle_{\rho_{\Phi}} \simeq \frac{1}{\mathcal{N}} \sum_{\mathcal{I}=1}^{\mathcal{N}} \mathbb{G}\left(R_{\mathcal{I}}, V\left(R_{\mathcal{I}}\right), \mathrm{f}\left(R_{\mathcal{I}}\right)\right)\right.
$$

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\text {eq }}} \xrightarrow{\text { Fourier trans. }} D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\text {eq }}}
$$

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a q-grid commensurate with the used supercell But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a q-grid commensurate with the used supercell
But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone In the SCHA modes basis set is (discarding $4^{\text {th }}$ order derivative terms...):

$$
D_{\mu \nu}^{(\mathrm{F})}(\boldsymbol{q})=D_{\mu \nu}(\boldsymbol{q})+\frac{1}{N_{\boldsymbol{k}}} \sum_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \delta_{\boldsymbol{q}+\boldsymbol{k}_{1}+\boldsymbol{k}_{2}} \sum_{\rho_{1} \rho_{2}} \mathcal{F}\left(\omega_{\rho 1}\left(\boldsymbol{k}_{1}\right), \omega_{\rho 2}\left(\boldsymbol{k}_{2}\right)\right)
$$

$$
\times \stackrel{(3)}{D}_{\mu \rho_{1} \rho_{2}}\left(-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2}\right) \stackrel{(3)}{D}_{\rho_{1} \rho_{2} \nu}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{q}\right)
$$

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a \mathbf{q}-grid commensurate with the used supercell
But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone In the SCHA modes basis set is (discarding $4^{\text {th }}$ order derivative terms...):

$$
D_{\mu \nu}^{(\mathrm{F})}(\boldsymbol{q})=D_{\mu \nu}(\boldsymbol{q})+\frac{1}{N_{\boldsymbol{k}}} \sum_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \delta_{\boldsymbol{q}+\boldsymbol{k}_{1}+\boldsymbol{k}_{2}} \sum_{\rho_{1} \rho_{2}} \mathcal{F}\left(\omega_{\rho 1}\left(\boldsymbol{k}_{1}\right), \omega_{\rho 2}\left(\boldsymbol{k}_{2}\right)\right)
$$

$$
\delta_{\mu \nu} \omega_{\nu}^{2}(\boldsymbol{q})
$$

$$
\times \stackrel{(3)}{D}_{\mu \rho_{1} \rho_{2}}\left(-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2}\right)_{\stackrel{(3)}{D}_{\rho_{1} \rho_{2} \nu}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{q}\right)
$$

Exploiting lattice-translation symmetry...

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a \mathbf{q}-grid commensurate with the used supercell
But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone In the SCHA modes basis set is (discarding $4^{\text {th }}$ order derivative terms...):
$D_{\mu \nu}^{(\mathrm{F})}(\boldsymbol{q})=D_{\mu \nu}(\boldsymbol{q})+\frac{1}{N_{\boldsymbol{k}}} \sum_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \delta_{\boldsymbol{q}+\boldsymbol{k}_{1}+\boldsymbol{k}_{2}} \sum_{\rho_{1} \rho_{2}} \mathcal{F}\left(\omega_{\rho 1}\left(\boldsymbol{k}_{1}\right), \omega_{\rho 2}\left(\boldsymbol{k}_{2}\right)\right)$

$$
\times \stackrel{(3)}{D}_{\mu \rho_{1} \rho_{2}}\left(-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2}\right)_{\stackrel{(3)}{ }_{\rho_{1}}^{\rho_{1} \nu}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{q}\right)
$$

Integration on a fine \mathbf{k} grid of $N_{\mathbf{k}}$ points (towards convergence)

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a \mathbf{q}-grid commensurate with the used supercell
But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone In the SCHA modes basis set is (discarding $4^{\text {th }}$ order derivative terms...):

$$
D_{\mu \nu}^{(\mathrm{F})}(\boldsymbol{q})=D_{\mu \nu}(\boldsymbol{q})+\frac{1}{N_{\boldsymbol{k}}} \sum_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \delta_{\boldsymbol{q}+\boldsymbol{k}_{1}+\boldsymbol{k}_{2}} \sum_{\rho_{1} \rho_{2}} \mathcal{F}\left(\omega_{\rho 1}\left(\boldsymbol{k}_{1}\right), \omega_{\rho 2}\left(\boldsymbol{k}_{2}\right)\right)
$$

$$
\times \stackrel{(3)}{D}_{\mu \rho_{1} \rho_{2}}\left(-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2} \stackrel{(3)}{D}_{\rho_{1} \rho_{2} \nu}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{q}\right)\right.
$$

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}} \xrightarrow{\text { Fourier trans. }} \quad D^{(\mathrm{F})}(\boldsymbol{q})=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R}(-\boldsymbol{q}) \partial \mathcal{R}(\boldsymbol{q})}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

At this level, $D^{(F)}(\boldsymbol{q})$ is defined only on a \mathbf{q}-grid commensurate with the used supercell But we can use Fourier interpolation and write it for any \mathbf{q} point of the Brillouin zone In the SCHA modes basis set is (discarding $4^{\text {th }}$ order derivative terms...):

$$
\begin{aligned}
D_{\mu \nu}^{(\mathrm{F})}(\boldsymbol{q})=D_{\mu \nu}(\boldsymbol{q})+ & \frac{1}{N_{\boldsymbol{k}}} \sum_{\boldsymbol{k}_{1} \boldsymbol{k}_{2}} \delta_{\boldsymbol{q}+\boldsymbol{k}_{1}+\boldsymbol{k}_{2}} \sum_{\rho_{1} \rho_{2}} \mathcal{F}\left(\omega_{\rho 1}\left(\boldsymbol{k}_{1}\right), \omega_{\rho 2}\left(\boldsymbol{k}_{2}\right)\right) \\
& \times \stackrel{(3)}{D}{ }_{\mu \rho_{1} \rho_{2}}\left(-\boldsymbol{q},-\boldsymbol{k}_{1},-\boldsymbol{k}_{2}\right) \stackrel{(3)}{D} \rho_{\rho_{1} \rho_{2} \nu}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{q}\right)
\end{aligned}
$$

$$
\stackrel{(3)}{D}=\frac{\stackrel{\oplus}{\Phi}}{\sqrt{M M M}} \stackrel{\text { Fourier trans. }}{\longrightarrow} \stackrel{(3)}{D}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right) \quad \text { (after centering) }
$$

- Compute and diagonalize $D^{(\mathrm{F})}(\boldsymbol{q})$
as a function of external parameter (e.g. T or P)
- Generalized phonon dispersion (as a function of T, P, \ldots)
- Displacive second-order phase transition:
- Critical value of external parameter (e.g. \boldsymbol{T}_{c} or \boldsymbol{P}_{c}) (phonon goes imaginary)
- Displacement pattern of (imaginary-phonon eigenmode)

Some examples...

Low dimensionality effects on CDW

Stronger fluctuations from finite temperature

Reduced screening Stronger electron-phonon coupling

Long-range CDW order

Disfavored

	$1 \mathrm{H}-\mathrm{TaSe}_{2}$	$1 \mathrm{H}-\mathrm{TaS}_{2}$	$1 \mathrm{H}-\mathrm{NbSe}_{2}$	$1 \mathrm{H}-\mathrm{NbS}_{2}$
CDW mono w.r.t. bulk	Unchanged	Vanishes	Controversial	Controversial

Low dimensionality effects on CDW

Stronger fluctuations
from finite temperature

Reduced screening
Stronger electron-phonon coupling

Long-range CDW order

Disfavored

$1 \mathrm{H}-\mathrm{TaSe}_{2}$ CDw mono w.r.t. bulk	$1 \mathrm{H}-\mathrm{TaS}_{2}$	$\mathbf{1 H}-\mathbf{N b S e}_{2}$	$\mathbf{1 H}-\mathbf{N b S}_{\mathbf{2}}$

NbS_{2}

Phonon dispersion including quantum anharmonic effects

Bulk: No CDW instability
Suspended monolayer: 3x3 CDW distortion

NbS_{2} : bulk

Harmonic dispersion:

- No temperature dependence
- Wrong instability

NbS_{2} : monolayer

- Structure compressed less than 0.5\% (still compatible with exp. Estimates)

No CDW

- No effect at harmonic level

NbSe_{2}

SCHA phonon dispersion as a function of T

NbSe_{2}

SCHA phonon dispersion as a function of T

Phonon softening at the correct CDW spatial modulation ($3 \times 3 \times 1$)

Harmonic calculation reproduces the correct CDW spatial modulation too, but wrong $T_{c} \ldots$

Softening of $\omega^{2}(T)$ for $q=3 \times 3$

Harmonic approximation:
Electronic temperature only
Nuclei contribution to entropy neglected

R. Bianco et al., PRL 125, 106101 (2020)

Softening of $\omega^{2}(T)$ for $q=3 \times 3$

Harmonic approximation:
Electronic temperature only
Nuclei contribution to entropy neglected

SCHA approximation:
Nuclei and electronic temperature
Nuclei and electronic contribution to entropy

R. Bianco et al., PRL 125, 106101 (2020)

Softening of $\omega^{2}(\mathrm{~T})$ for $\mathrm{q}=3 \times 3$

R. Bianco et al., PRL 125, 106101 (2020)

SSCHA phonon dispersion as a function of T

NbSe_{2} : bulk and monolayer

- Bulk Exp.
- Bulk Th.
- Monolayer Th.

Softening of $\omega^{2}(T)$ for $q=3 \times 3$

NbSe_{2} : bulk and monolayer

Bulk Exp.
 Softening of $\omega^{2}(T)$ for $q=3 \times 3$

Bulk Th.

In the CDW transition of NbSe_{2} :

- Ionic fluctuations dominate over electronic fluctuations
- Weak dimensionality dependence

Temperature (K)

Superconductivity: the T_{c} history

Superconductivity: the T_{c} history

Protons have large zero-point energy:
the quantum nature of hydrogen cannot be neglected

LaH_{10} Phonon dispersion in the $F m \overline{3} m$ phase

At harmonic level:
the structure becomes stable only above 220-250 GPa
below this pressure, large instabilities in several regions of the Brillouin zone

$H_{3} \mathrm{~S}$: the $\operatorname{Im} \overline{3} \mathrm{~m}$ phase

Harmonic phonons (classical)

Quantum anharmonic effects

 neglected1
High-symmetry phase unstable

$H_{3} \mathrm{~S}$: the $\operatorname{Im} \overline{3} \mathrm{~m}$ phase

Squared optical phonon freq. in $\Gamma\left(10^{3} \mathrm{meV}^{2}\right)$

Harmonic phonons (classical)

$H_{3} \mathrm{~S}$: the $\operatorname{Im} \overline{3} \mathrm{~m}$ phase

Squared optical phonon freq. in $\Gamma\left(10^{3} \mathrm{meV}^{2}\right)$

Harmonic phonons (classical) Quantum anharmonic phonons

$H_{3} \mathrm{~S}$: the $\operatorname{Im} \overline{3} \mathrm{~m}$ phase

Quantum anharmonic effects included
1
High-symmetry phase stable

Quantum anharmonic phonons

A sneak peek of Lecture 4

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

Generalized phonon dispersion (as a function of T, P, \ldots)

A sneak peek of Lecture 4

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

Generalized phonon dispersion (as a function of T, P, \ldots)

A sneak peek of Lecture 4

$$
D^{(\mathrm{F})}=\left.\frac{1}{\sqrt{M M}} \frac{\partial^{2} F}{\partial \mathcal{R} \partial \mathcal{R}}\right|_{\mathcal{R}_{\mathrm{eq}}}
$$

Generalized phonon dispersion (as a function of T, P, \ldots)

A dynamic theory needs to be introduced....

