Raman and Infrared spectra of strongly anharmonic materials

MoRe-TEM

SAPIENZA

European Research Council
Established by the European Commission
Speaker: Antonio Siciliano La Sapienza University of Rome

Outline

- General principles of infrared absorption and Raman scattering
- Applications
- Missing terms in the light-matter interactions and anharmonic effects
- The approach of Time-Dependent SCHA

Infrared response

Transmitted

IR light $700 \mathrm{~nm} / 1 \mathrm{~mm} 1.5 \mathrm{eV} / 1.5 \mathrm{meV}$

- Long wave-length normal modes
- Chemical composition
- Crystal symmetry
- Phase diagrams
- Non destructive: linear response, (no heat, no macroscopic/irreversible changes)

Infrared response

Ratio of energy flux

Dielectric constant...

Infrared response

Key quantity

$$
\begin{aligned}
& \boldsymbol{\epsilon}(\omega)=\mathbf{1}+4 \pi \boldsymbol{\chi}(\omega) \\
& \boldsymbol{P}(\omega)=\boldsymbol{\chi}(\omega) \cdot \boldsymbol{E}(\omega)
\end{aligned}
$$

Low energy (meV) Vibrations, optical phonons

$$
\boldsymbol{\epsilon}(\omega)=\boldsymbol{\epsilon}_{\mathrm{el}}(\omega)+\boldsymbol{\epsilon}_{\mathrm{ph}}(\omega)
$$

High energy (eV): excitons, band-band transitions

Plot for insulator...

Infrared response

Dielectric constant

$$
\boldsymbol{\epsilon}(\omega)=\boldsymbol{\epsilon}_{\mathrm{el}}(\omega)+\boldsymbol{\epsilon}_{\mathrm{ph}}(\omega)
$$

- Normal modes (fingerprint of structure)
- Chemical bonds
- Chemical environment
- Model?

Infrared response

Dielectric constant

$$
\boldsymbol{\epsilon}(\omega)=\boldsymbol{\epsilon}_{\mathrm{el}}(\omega)+\boldsymbol{\epsilon}_{\mathrm{ph}}(\omega)
$$

Phononic contribution

$$
\begin{aligned}
& \epsilon_{\mathrm{ph}, \alpha \beta}(\omega)= \frac{4 \pi}{V} \sum_{\mu}^{\mathrm{opt}} \frac{p_{\alpha}^{\mu} p_{\beta}^{\mu}}{\omega_{\mu}^{2}-\left(\omega+i \gamma_{\mu}\right)^{2}} \\
& p_{\alpha}^{\mu}= \sum_{b}^{\mathrm{uc}} \sum_{\beta}^{x y z} e Z_{\alpha, b \beta} \frac{e_{\mu}^{b \beta}}{\sqrt{m_{b}}} \\
& \text { Light-phonon coupling }
\end{aligned}
$$

$$
T(\omega)=\frac{I_{\mathrm{T}}(\omega)}{I_{\mathrm{I}}(\omega)}=(1-R(\omega))^{2} e^{-\alpha(\omega)}
$$

Infrared response

Diagrams?

Infrared response

Phononic contribution

Sample

Transmitted

$$
T(\omega)=\frac{I_{\mathrm{T}}(\omega)}{I_{\mathrm{I}}(\omega)}=(1-R(\omega))^{2} e^{-\alpha(\omega)}
$$

- Diagrams: E.M. interaction mediated by electrons e-ph coupling
- Ingredients?

Infrared response

Incident Reflected

Phonons
$\frac{d^{2} E_{\mathrm{el}}}{d \boldsymbol{R}_{a} d \boldsymbol{R}_{b}}$

Effective charges

$$
Z_{\alpha, b}=\frac{d^{2} E_{\mathrm{el}}}{d E_{\alpha} d \boldsymbol{R}_{b}}
$$

$$
\frac{d^{3} E_{\mathrm{el}}}{d \boldsymbol{R}_{a} d \boldsymbol{R}_{b} d \boldsymbol{R}_{c}}
$$

Infrared spectroscopy

- Molecular info
- Chemical group fingerprint
- Non destructive
- In-vivo study of cells/tissue + drugs
protective layer Lipidis
$\mathrm{CH}_{2} \mathrm{CH}_{3}$ stretching

Another complementary approach...

Raman response

Scattering VIS light ($400 / 700 \mathrm{~nm} 1.5 / 3 \mathrm{eV} \sim 10^{4} \mathrm{~cm}^{-1}$)

- Semiconductors
- Non-resonant (spontaneous)
- No electronic excitations

Exp configuration $\underline{k}_{i}\left(\right.$ pol $_{i}$, , pol $\left._{\text {out }}\right)$ $\underline{k}_{\text {out }}$

Raman response

$$
\begin{aligned}
\boldsymbol{P}(t) & =\chi\left(\boldsymbol{R}(t), \omega_{\mathrm{i}}\right) \cdot \boldsymbol{E}\left(\omega_{\mathrm{i}}\right) \cos \left(\omega_{\mathrm{i}} t\right) \\
\begin{array}{l}
\text { Zone-center } \\
\text { optical phonons }
\end{array} & =\left[\boldsymbol{\chi}\left(\boldsymbol{\mathcal { R }}_{\mathrm{BO}}, \omega_{i}\right)+\sum_{a}^{3 \mathrm{uc}} \frac{\partial \boldsymbol{\chi}\left(\boldsymbol{\mathcal { R }}_{\mathrm{BO}}, \omega_{\mathrm{i}}\right)}{\partial R_{a}} \frac{e_{\mu}^{a}}{\sqrt{m_{a}}} \cos \left(\omega_{\mu} t\right)\right] \cdot \boldsymbol{E}\left(\omega_{\mathrm{i}}\right) \cos \left(\omega_{\mathrm{i}} t\right) \\
& =\boldsymbol{P}^{\mathrm{el}} \cos \left(\omega_{\mathrm{i}} t\right)+\boldsymbol{P}_{\mu}^{\mathrm{ph}}\left\{\cos \left[\left(\omega_{\mathrm{i}}+\omega_{\mu}\right) t\right]+\cos \left[\left(\omega_{\mathrm{i}}-\omega_{\mu}\right) t\right]\right\}
\end{aligned}
$$

Raman response

Positions of the peaks...

$$
\boldsymbol{P}(t)=\boldsymbol{P}^{\mathrm{el}} \cos \left(\omega_{\mathrm{i}} t\right)+\boldsymbol{P}_{\mu}^{\mathrm{ph}}\left\{\cos \left[\left(\omega_{\mathrm{i}}+\omega_{\mu}\right) t\right]+\cos \left[\left(\omega_{\mathrm{i}}-\omega_{\mu}\right) t\right]\right\}
$$

What about the different intensity? Statistical mechanics...

Raman response

Sample

Radiating dipole + infinite lifetime
$I=\left|\sum_{a}^{\mathrm{uc}} \sum_{\alpha}^{x y z} \boldsymbol{E}^{\mathrm{i}} \cdot \frac{\partial \boldsymbol{\chi}\left(\boldsymbol{\mathcal { R }}_{\mathrm{BO}}\right)}{\partial R_{a \alpha}} \cdot \boldsymbol{E}^{\mathrm{f}} \frac{e_{\mu}^{a \alpha}}{\sqrt{m_{a}}}\right|^{2}$

- Adiabatic
- Only e- response (VIS)
- Insulator
- Zero phonon freq
- Indep of light freq Diagrams?

Raman response

Incident

Scattered

$$
\frac{d^{2} E_{\mathrm{el}}}{d \boldsymbol{R}_{a} d \boldsymbol{R}_{b}} \quad \Xi_{\alpha \beta, a}=\frac{d E_{\mathrm{el}}}{d E_{\alpha} d E_{\beta} d \boldsymbol{R}_{a}} \quad \frac{d^{3} E_{\mathrm{el}}}{d \boldsymbol{R}_{a} d \boldsymbol{R}_{b} d \boldsymbol{R}_{c}}
$$

Example?

Raman spectroscopy

Polyethylene terephthalate (PET)

1. Aromatic ring
2. Double bonds $(\mathrm{C}=\mathrm{O} \mathrm{C}=\mathrm{C})$
3. Triple bonds
4. Hydrogen stretching

Single peaks!
Strange spectra?

IR with inversion symmetry?

- Silicon inversion symmetry -> NO IR
- Signal is quite broad
- IR light -> no electrons

What is missing in IR?

- Silicon inversion symmetry -> NO IR
- Signal is quite broad
- IR light -> no electrons
- Two-phonon DOS?
$\operatorname{TDOS}(\omega)=\sum_{\mu \nu} \delta\left(\omega_{\mu}+\omega_{\nu}-\omega\right) \delta\left(\boldsymbol{q}_{\mu}-\boldsymbol{q}_{\nu}\right)$
Signal = two-phonon DOS 'modulated'

Similar effect in Raman

One-ph due to optical ph

Diamond

Background important in diamond anvil cell experiments

Similar effect in Raman

Diamond

Signal = two-phonon DOS 'modulated'? Theoretical perspective?

The theoretical perspective

$$
\begin{array}{cc}
I(\omega)_{\mathrm{IR}} \propto-\operatorname{Im}\left(\sum_{\mu}^{\mathrm{opt}} Z_{\alpha, \mu} \mathcal{G}_{\mu \mu}^{(0)}(\omega) Z_{\beta, \mu}\right) & I(\omega)_{\mathrm{Raman}} \propto-\operatorname{Im}\left(\sum_{\mu}^{\mathrm{opt}} \Xi_{\alpha \beta, \mu} \mathcal{G}_{\mu \mu}^{(0)}(\omega) \Xi_{\alpha \beta, \mu}\right) \\
Z_{\alpha, \mu}=\frac{d E_{\mathrm{el}}}{d E_{\alpha} d R_{\mu}} & \Xi_{\alpha \beta, \mu}=\frac{d E_{\mathrm{el}}}{d E_{\alpha} d E_{\beta} d R_{\mu}}
\end{array}
$$

- Different couplings
- Derivative in the phonon $=\mathrm{e} / \mathrm{ph}$ coupling
- Same phonon propagator
- Different selection rules (TO vs LO/TO)

$$
\mathcal{G}_{\mu \nu}^{(0)}(\omega)=\frac{\delta_{\mu \nu}}{\omega^{2}-\omega_{\mu}^{2}}
$$

The theoretical perspective

$I(\omega)_{\mathrm{IR}} \propto-\operatorname{Im}\left(\sum_{\mu}^{\mathrm{opt}} Z_{\alpha, \mu} \mathcal{G}_{\mu \mu}^{(0)}(\omega) Z_{\beta, \mu}\right)$

$I(\omega)_{\mathrm{IR}} \propto-\operatorname{Im}\left(\sum_{\mu \nu} \frac{\partial Z_{\alpha, \mu}}{\partial R_{\nu}} \chi_{\mu \nu}^{(0)}(\omega) \frac{\partial Z_{\beta, \mu}}{\partial R_{\nu}}\right)$

$I(\omega)_{\text {Raman }} \propto-\operatorname{Im}\left(\sum_{\mu}^{\mathrm{opt}} \Xi_{\alpha \beta, \mu} \mathcal{G}_{\mu \mu}^{(0)}(\omega) \Xi_{\alpha \beta, \mu}\right)$

$I(\omega)_{\text {Raman }} \propto-\operatorname{Im}\left(\sum_{\mu \nu} \frac{\partial \Xi_{\alpha \beta, \mu}}{\partial R_{\nu}} \chi_{\mu \nu}^{(0)}(\omega) \frac{\partial \Xi_{\alpha \beta, \mu}}{\partial R_{\nu}}\right)$

What are two-phonon effects?

Simple model: two IR/Raman active vibrations

What are two-phonon effects?

- No selection rules,

- Only energy-momentum conservation!
- Creation/annihilation processes
- Temperature dependence?

What are two-phonon effects?

What are two-phonon effects?

No selection rules!

See the invisible

- Zone-center inactive by symmetry
- Also combination of off zone-center (see example)

Back to applications!

STO: quantum paraelectric cubic phase, TO phonon in 2-ph Raman?

Two-phonon IR

Silicon

Vertex modulation!

Two-phonon IR

Silicon

Ingredients:

- Harmonic phonons
- Combination of L/TO L/TA at zone boundaries

- Vertex

Two-phonon Raman
 $$
I(\omega)_{\text {Raman }} \propto-\operatorname{Im}\left(\sum_{\mu}^{\mathrm{opt}} \frac{\partial \Xi_{\alpha \beta, \mu}}{\partial R_{\nu}} \chi_{\mu \nu}^{(0)}(\omega) \frac{\partial \Xi_{\alpha \beta, \mu}}{\partial R_{\nu}}\right)
$$

- Expensive DFPT calculations
- Low symmetry?
- Is always harmonic theory enough?
- Anharmonic
+2 ph example?

Two-phonon + anharmonic effects

Anharmonic DW with tunneling
= dynamical disorder + average cubic symmetry (no Raman)

Infrared and Raman as response function

$$
\begin{aligned}
I_{\mathrm{IR}}(\omega) & \propto-\operatorname{Im}\left(\sum_{\nu \mu}^{\mathrm{opt}} Z_{\alpha, \mu} \mathcal{G}_{\mu \nu}^{(0)}(\omega) Z_{\beta, \nu}\right) \\
& \propto-\operatorname{Im}\left(\int d t e^{i \omega t} \sum_{\mu \nu}^{\mathrm{opt}} Z_{\alpha, \mu}\left\langle u_{\mu}(t) u_{\nu}(0)\right\rangle Z_{\beta, \nu}\right) \\
& \propto-\operatorname{Im}\left(\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle\right) \quad \text { dipole correlation function }
\end{aligned}
$$

Infrared and Raman as response function

$$
I_{\mathrm{IR}}(\omega) \propto-\operatorname{Im}\left(\sum_{\nu \mu}^{\mathrm{opt}} Z_{\alpha, \mu} \mathcal{G}_{\mu \nu}^{(0)}(\omega) Z_{\beta, \nu}\right)
$$

- Useful formulation for MD

$$
\propto-\operatorname{Im}\left(\int d t e^{i \omega t} \sum_{\mu \nu}^{\mathrm{opt}} Z_{\alpha, \mu}\left\langle u_{\mu}(t) u_{\nu}(0)\right\rangle Z_{\beta, \nu}\right)
$$

- Physical picture?

$$
\propto-\operatorname{Im}\left(\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle\right) \quad \text { dipole correlation function }
$$

$$
I_{\operatorname{Raman}}(\omega) \propto-\operatorname{Im}\left(\int d t e^{i \omega t}\left\langle\chi_{\alpha \beta}(t) \chi_{\alpha \beta}(0)\right\rangle\right) \text { polarizability correlation function }
$$

What is a response function?

$$
\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle \quad \int d t e^{i \omega t}\left\langle\chi_{\alpha \beta}(t) \chi_{\eta \lambda}(0)\right\rangle
$$

Probe field, e.g. how the material reacts $\langle\mathcal{A}(\boldsymbol{R})\rangle_{(0)}+\langle\mathcal{A}(\stackrel{\rightharpoonup}{\boldsymbol{R}})\rangle_{(1)}$

Pump field (small), e.g. X-ray, neutrons, Infrared, Raman etc.

$$
\mathcal{B}(\boldsymbol{R}) \mathcal{V}(t)
$$

Trigger the interactions in the material

Infrared and Raman as response function

A practical MD example before the SCHA theory...

Molecular Dynamics Raman

Time-dependent phenomena

- We consider N particles at equilibrium in the Born-Oppenheimer approximation

$$
H^{(\mathrm{BO})}=\sum_{a=1}^{3 N} \frac{P_{a}^{2}}{2 m_{a}}+V^{(\mathrm{BO})}(\boldsymbol{R})
$$

Time-dependent phenomena

- We consider N particles at equilibrium in the Born-Oppenheimer approximation:

$$
H^{(\mathrm{BO})}=\sum_{a=1}^{3 N} \frac{P_{a}^{2}}{2 m_{a}}+V^{(\mathrm{BO})}(\boldsymbol{R})
$$

- An external potential is turned on:

$$
H(t)=\sum_{a=1}^{3 N} \frac{P_{a}^{2}}{2 m_{a}}+V^{(\mathrm{tot})}(\boldsymbol{R}, t)
$$

Mediated by electrons!

$$
V^{(\mathrm{tot})}(\boldsymbol{R}, t)=V^{(\mathrm{BO})}(\boldsymbol{R})+V^{(\mathrm{ext})}(\boldsymbol{R}, t)
$$

Classical and quantum evolution

- The classical Liouville evolution

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L}^{\mathrm{cl}} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}^{\mathrm{cl}} \circ=-H(t) \stackrel{\leftrightarrow}{\Lambda} \circ \\
& \text { Poisson brackets } \overleftrightarrow{\Lambda}=\sum_{a=1}^{3 N}\left(\frac{\overleftarrow{\partial}}{\partial R_{a}} \frac{\vec{\partial}}{\partial P_{a}}-\frac{\overleftarrow{\partial}}{\partial P_{a}} \frac{\vec{\partial}}{\partial R_{a}}\right)
\end{aligned}
$$

Classical and quantum evolution

- The classical Liouville evolution

$$
\frac{\partial}{\partial t} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L}^{\mathrm{cl}} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}^{\mathrm{cl}} \circ=-H(t) \stackrel{\leftrightarrow}{\Lambda} \circ
$$

- The Wigner-Liouville quantum approach

$$
\begin{gathered}
\left\lfloor\rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)=\int \frac{d \boldsymbol{R}^{\prime} e^{-\frac{i}{\hbar} \boldsymbol{P} \cdot \boldsymbol{R}^{\prime}}}{(2 \pi \hbar)^{3 N}}\left\langle\boldsymbol{R}+\frac{\boldsymbol{R}^{\prime}}{2}\right| \hat{\rho}(t)\left|\boldsymbol{R}-\frac{\boldsymbol{R}^{\prime}}{2}\right\rangle\right. \text { Quasi distribution } \\
O_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P})=\int d \boldsymbol{R}^{\prime} e^{-\frac{i}{\hbar} \boldsymbol{P} \cdot \boldsymbol{R}^{\prime}}\left\langle\boldsymbol{R}+\frac{\boldsymbol{R}^{\prime}}{2}\right| \hat{O}\left|\boldsymbol{R}-\frac{\boldsymbol{R}^{\prime}}{2}\right\rangle
\end{gathered}
$$

Replace density matrix and operators with functions

Classical and quantum evolution

- The classical Liouville evolution

$$
\frac{\partial}{\partial t} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L}^{\mathrm{cl}} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}^{\mathrm{cl}} \circ=-H(t) \overleftrightarrow{\Lambda} \circ
$$

- The Wigner-Liouville quantum approach

$$
\begin{aligned}
\rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t) & =\int \frac{d \boldsymbol{R}^{\prime} e^{-\frac{i}{\hbar} \boldsymbol{P} \cdot \boldsymbol{R}^{\prime}}}{(2 \pi \hbar)^{3 N}}\left\langle\boldsymbol{R}+\frac{\boldsymbol{R}^{\prime}}{2}\right| \hat{\rho}(t)\left|\boldsymbol{R}-\frac{\boldsymbol{R}^{\prime}}{2}\right\rangle \\
O_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}) & =\int d \boldsymbol{R}^{\prime} e^{-\frac{i}{\hbar} \boldsymbol{P} \cdot \boldsymbol{R}^{\prime}}\left\langle\boldsymbol{R}+\frac{\boldsymbol{R}^{\prime}}{2}\right| \hat{O}\left|\boldsymbol{R}-\frac{\boldsymbol{R}^{\prime}}{2}\right\rangle \\
\left\langle O_{\mathrm{w}}\right\rangle_{\rho_{\mathrm{w}}} & =\int d \boldsymbol{R} \int d \boldsymbol{P} O_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}) \rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)
\end{aligned}
$$

Classical and quantum evolution

- The classical Liouville evolution

$$
\frac{\partial}{\partial t} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L}^{\mathrm{cl}} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}^{\mathrm{cl}} \circ=-H(t) \overleftrightarrow{\Lambda} \circ
$$

- The Wigner-Liouville evolution

$$
\frac{\partial}{\partial t} \rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L} \rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}=i \mathcal{L}^{\mathrm{cl}}+i \mathcal{L}^{\mathrm{q}}
$$

Quantum effects as high power of Poisson brackets

$$
i \mathcal{L}^{\mathrm{q}} \circ=-\sum_{n=1}^{+\infty} \frac{\left(-\hbar^{2}\right)^{n}}{2^{2 n}(2 n+1)!} H(t)(\overleftrightarrow{\Lambda})^{2 n+1} \circ
$$

- Quantum chemistry: quantum initial condition with P.I. + classical evolution
- SCHA = Gaussian = Harmonic...

Classical and quantum evolution

- The classical Liouville evolution

$$
\frac{\partial}{\partial t} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L}^{\mathrm{cl}} \rho_{\mathrm{cl}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}^{\mathrm{cl}} \circ=-H(t) \overleftrightarrow{\Lambda} \circ
$$

- The Wigner-Liouville quantum evolution:

$$
\frac{\partial}{\partial t} \rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)+i \mathcal{L} \rho_{\mathrm{w}}(\boldsymbol{R}, \boldsymbol{P}, t)=0 \quad i \mathcal{L}=i \mathcal{L}^{\mathrm{cl}}+i \mathcal{L}^{2}
$$

$$
i \mathcal{L}^{\mathrm{q}} \circ=-\sum_{n=1}^{+\infty} \frac{\left(-\hbar^{2}\right)^{n}}{2^{2}(2 n+1)!} H(t)(\overparen{\Lambda})^{2 n+1} \circ
$$

- When do they coincide?

$$
H(t)=\sum_{a=1}^{3 N} \frac{P_{a}^{2}}{2 m_{a}}+\frac{1}{2} \sum_{a b=1}^{3 N}\left(R-R_{0}(t)\right)_{a} K_{0}(t)_{a b}\left(R-R_{0}(t)\right)_{b} \quad \begin{aligned}
& \text { Classical=Quantum } \\
& \text { TD-SCHA... }
\end{aligned}
$$

Time-Dependent SCHA

- Gaussian approximation in the Wigner-Liouville formalism

$$
\begin{array}{ll}
\begin{aligned}
& \widetilde{\rho}(t)=\mathcal{N}(t) \exp [-\frac{1}{2}(\boldsymbol{R}-\mathcal{R}(t)) \cdot \boldsymbol{\alpha}(t) \cdot(\boldsymbol{R}-\mathcal{R}(t)) \\
& \\
&-\frac{1}{2}(\boldsymbol{P}-\mathcal{P}(t)) \cdot \boldsymbol{\beta}(t) \cdot(\boldsymbol{P}-\mathcal{P}(t)) \\
& \text { ers distribution! } \\
&+(\boldsymbol{R}-\mathcal{R}(t)) \cdot \gamma(t) \cdot(\boldsymbol{P}-\mathcal{P}(t))]
\end{aligned}
\end{array}
$$

Ansatz for the Wigner distribution!
position-momentum coupling ensures quantum effects

Time-Dependent SCHA

- Gaussian approximation in the Wigner-Liouville formalism

$$
\begin{aligned}
\widetilde{\rho}(t)=\mathcal{N}(t) \exp [& -\frac{1}{2}(\boldsymbol{R}-\mathcal{R}(t)) \cdot \boldsymbol{\alpha}(t) \cdot(\boldsymbol{R}-\mathcal{R}(t)) \\
& -\frac{1}{2}(\boldsymbol{P}-\mathcal{P}(t)) \cdot \boldsymbol{\beta}(t) \cdot(\boldsymbol{P}-\mathcal{P}(t)) \\
& +(\boldsymbol{R}-\mathcal{R}(t)) \cdot \gamma(t) \cdot(\boldsymbol{P}-\mathcal{P}(t))]
\end{aligned}
$$

- Self-consistent evolution

$$
\frac{\partial}{\partial t} \widetilde{\rho}(t)+i \mathcal{L}^{\mathrm{sc}} \widetilde{\rho}(t)=0 \quad i \mathcal{L}^{\mathrm{sc}} \circ=-\mathcal{H}(\widetilde{\rho}) \overleftrightarrow{\Lambda} \circ
$$

$\mathcal{H}(\widetilde{\rho})=\sum_{a=1}^{3 N} \frac{P_{a}^{2}}{2 m_{a}}+\delta \boldsymbol{R}(t) \cdot\left\langle\frac{\partial V^{(\mathrm{tot})}(\boldsymbol{R}, t)}{\partial \boldsymbol{R}}\right\rangle_{\widetilde{\rho}(t)}+\frac{1}{2} \delta \boldsymbol{R}(t) \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}(\boldsymbol{R}, t)}{\partial \boldsymbol{R} \partial \boldsymbol{R}}\right\rangle_{\widetilde{\rho}(t)} \cdot \delta \boldsymbol{R}(t)$

Time-Dependent SCHA

- Equations for equal-time correlators (free parameters)

$$
\begin{aligned}
\frac{d}{d t}\langle\widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} & =\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =-\left\langle\frac{\partial V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} & =\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}+\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =-\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
\end{aligned}
$$

Time-Dependent SCHA

- Equations for equal-time correlators (free parameters)

$$
\begin{array}{rlrl}
\frac{d}{d t}\langle\widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} & =\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & \bullet \begin{array}{l}
\text { Newton (Ehrenfest) equations of } \\
\frac{d}{d t}\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}
\end{array}=-\left\langle\frac{\partial V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} & \bullet \\
\frac{d}{d t}\langle\delta \text { Momentum (dime correlators = free par } \\
\left.\frac{\bullet}{d} \delta \widetilde{\boldsymbol{R}}\right\rangle_{\widetilde{\rho}(t)} & =\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}+\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =-\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
\end{array}
$$

- Quantum/classical evolution

Time-Dependent SCHA

- Classical evolution = MD!

Time-Dependent SCHA

- Equations for equal-time correlators (free parameters)

$$
\begin{aligned}
\frac{d}{d t}\langle\widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} & =\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =-\left\langle\frac{\partial V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
\end{aligned}
$$

- Newton (Ehrenfest) equations of motion
- Equal time correlators
- Momentum (diffusion, transport)

$$
\begin{aligned}
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} & =\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}+\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \\
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} & =-\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
\end{aligned}
$$

$$
\frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}=\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\text {tot })}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
$$

- Quantum/classical evolution

Semiclassical? NO Non perturbative anharmonic!

- TDSCHA is exact for quantum TD harmonic oscillator

Time-Dependent SCHA: stationary solution

- Stationary solution of TD-SCHA = SCHA!

$$
\widetilde{\rho}^{(0)}(\boldsymbol{R}, \boldsymbol{P})=\mathcal{N}^{(0)} \exp \left[-\frac{1}{2} \widetilde{\boldsymbol{P}} \cdot\langle\widetilde{\boldsymbol{P}} \widetilde{\boldsymbol{P}}\rangle_{(0)}^{-1} \cdot \widetilde{\boldsymbol{P}}-\frac{1}{2} \delta \widetilde{\boldsymbol{R}} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(0)}^{-1} \cdot \delta \widetilde{\boldsymbol{R}}\right]
$$

Non diagonal correlations = quantum

$$
\begin{array}{|llll|}
\left\langle\frac{\partial V^{\mathrm{BO}}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)}=\mathbf{0} \quad\langle\widetilde{\boldsymbol{P}}\rangle_{(0)}=\mathbf{0} \quad\langle\delta \tilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{(0)}=\mathbf{0} \\
\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{(0)}=\langle\delta \tilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(0)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)}
\end{array}
$$

Equilibrium condition + no R-P correlations + sc equipartion theorem propagators?

Time-Dependent SCHA: stationary solution

- Stationary solution of TD-SCHA = SCHA!

$$
\widetilde{\rho}^{(0)}(\boldsymbol{R}, \boldsymbol{P})=\mathcal{N}^{(0)} \exp \left[-\frac{1}{2} \widetilde{\boldsymbol{P}} \cdot\langle\widetilde{\boldsymbol{P}} \widetilde{\boldsymbol{P}}\rangle_{(0)}^{-1} \cdot \widetilde{\boldsymbol{P}}-\frac{1}{2} \delta \widetilde{\boldsymbol{R}} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(0)}^{-1} \cdot \delta \widetilde{\boldsymbol{R}}\right]
$$

$$
\text { scHA Phonons }=\left\langle\frac{\partial^{2} V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)}
$$

SCHA single and double propagators: starting point of linear response
N.B.: auxiliary quantities as KS orbitals in DFT

$$
\begin{aligned}
\mathcal{G}^{(0)}(\omega)=-=\frac{\delta_{\mu \nu}}{\omega^{2}-\omega_{\mu}^{2}} \quad \chi^{(0)}(\omega) & =\sim
\end{aligned}
$$

Time-Dependent SCHA: linear response

- Infrared and Raman simulation: we know the response formula!

$$
\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle \quad \int d t e^{i \omega t}\left\langle\chi_{\alpha \beta}(t) \chi_{\eta \lambda}(0)\right\rangle
$$

Probe field, e.g. how the material reacts

$$
\langle\mathcal{A}(\boldsymbol{R})\rangle_{(0)}+\langle\mathcal{A}(\boldsymbol{R})\rangle_{(1)}
$$

Perturb the SCHA equilibrium solution

$$
\widetilde{\rho}(t)=\widetilde{\rho}^{(0)}+\widetilde{\rho}^{(1)}(t)
$$

Time-Dependent SCHA: linear response

- Infrared and Raman simulation: we know the response formula!

$$
\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle \quad \int d t e^{i \omega t}\left\langle\chi_{\alpha \beta}(t) \chi_{\eta \lambda}(0)\right\rangle
$$

Probe field, e.g. how the material reacts

$$
\langle\mathcal{A}(\boldsymbol{R})\rangle_{(0)}+\langle\mathcal{A}(\boldsymbol{R})\rangle_{(1)}
$$

Perturb the SCHA equilibrium solution = perturb the correlators (free parameters)

$$
\mathcal{L}(\omega) \cdot\left[\begin{array}{c}
\widetilde{\mathcal{R}}^{(1)} \\
\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(1)} \\
\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{(1)}
\end{array}\right]=\boldsymbol{p} \mathcal{V}(\omega)
$$

Time-Dependent SCHA: linear response

- Infrared and Raman simulation: we know the response formula!

$$
\int d t e^{i \omega t}\left\langle p_{\alpha}(t) p_{\beta}(0)\right\rangle \quad \int d t e^{i \omega t}\left\langle\chi_{\alpha \beta}(t) \chi_{\eta \lambda}(0)\right\rangle
$$

Probe field, e.g. how the material reacts
$\langle\mathcal{A}\rangle_{(1)}(\omega)=\boldsymbol{r}^{\dagger} \cdot\left[\begin{array}{c}\widetilde{\mathcal{R}}^{(1)} \\ \langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(1)} \\ \langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{(1)}\end{array}\right]$

Perturb the SCHA equilibrium solution

$$
\mathcal{L}(\omega) \cdot\left[\begin{array}{c}
\widetilde{\mathcal{R}}^{(1)} \\
\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(1)} \\
\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{(1)}
\end{array}\right]=\boldsymbol{p} \mathcal{V}(\omega)
$$

Time-Dependent SCHA: linear response

- How to build the response?

Probe field, e.g. how the material reacts

$$
\langle\mathcal{A}\rangle_{(1)}(\omega)=\boldsymbol{r}^{\dagger} \cdot\left[\begin{array}{c}
\widetilde{\boldsymbol{\mathcal { R }}}^{(1)} \\
\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{(1)} \\
\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{(1)}
\end{array}\right]
$$

Perturb the SCHA equilibrium solution

$$
\chi(\omega)_{\mathcal{A}, \mathcal{B}}=\boldsymbol{r}^{\dagger} \cdot \mathcal{L}(\omega)^{-1} \cdot \boldsymbol{p}
$$

Probe field, e.g. how the material reacts

$$
\langle\mathcal{A}(\boldsymbol{R})\rangle_{(0)}+\langle\mathcal{A}(\dot{\boldsymbol{R}})\rangle_{(1)}
$$

Pump field (small), e.g. X-ray, neutrons, Infrared, Raman etc.
$\mathcal{B}(\boldsymbol{R}) \mathcal{V}(t)$

What is this in TDSCHA? A simple (?) matrix vector product

Interacting linear response in TD-SCHA

$$
\begin{equation*}
\stackrel{\text { Scattering ver }}{\left.\stackrel{(3)}{\boldsymbol{D}}=\left\langle=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\mathbf{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \stackrel{(4)}{\boldsymbol{D}}=\square=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(}\right\rangle^{(}\right) .} \tag{0}
\end{equation*}
$$

Non-interacting response in TD-SCHA

Response vector

These are not harmonic phonons!!!
How to get them?

SCHA propagators: how to get them?

Response vector

Many body
propagator
How to get the propagators?

$$
\mathcal{A}=\mathcal{B}=\widetilde{R}_{\mu}
$$

Non-interacting response in TD-SCHA

$$
\begin{aligned}
& \chi(\omega)_{\mathcal{A}, \mathcal{A}}=\mathcal{G}^{(0)}(\omega) \\
& =\left\langle\frac{\partial \mathcal{A}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \quad O=\left\langle\frac{\partial^{2} \mathcal{A}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \\
& \text { Natural: two-phonon! }
\end{aligned}
$$

Interacting linear response in TD-SCHA

$$
\begin{equation*}
\stackrel{(3)}{\boldsymbol{D}}=\Perp=\underset{\text { What are the interacting propagators? }}{\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \stackrel{(4)}{\boldsymbol{D}}=\square=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle} \tag{0}
\end{equation*}
$$

TD-SCHA propagators

Partially screened 2-phonon

Can we ask more?

$$
\stackrel{(3)}{\boldsymbol{D}}=\left\langle=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \stackrel{(4)}{\boldsymbol{D}}=\square=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)}\right.
$$

3-phonon propagation?

$\mathcal{A}=\mathcal{B}=\widetilde{\boldsymbol{R}} \widetilde{\boldsymbol{R}} \widetilde{\boldsymbol{R}} \quad$ 3-phonon excitation (Gaussian+Wick theorem?)

- TDSCHA 3-phonon propagator disconnected = irrelevant
- Hierarchy of diagrams is truncated
- Practical calculations of response function?

Interacting linear response in TD-SCHA

- Storage of the matrix is hard
- Full inversion scales as N^{6}
- One shot (Lanczos=no inversion) calculation for all frequencies
- No MD trajectories!

Lanczos algorithm

Key quantity: response function
$\chi(\omega)_{\mathcal{A}, \mathcal{B}}=\boldsymbol{r} \cdot\left(\mathcal{L}+\omega^{2}\right)^{-1} \cdot \boldsymbol{p}$

Full inversion scales as $\left(\mathbf{N}^{2}\right)^{3}$
Tridiagonal form
$\mathcal{T}=\left[\begin{array}{ccccc}a_{1} & b_{1} & \cdots & \cdots & 0 \\ c_{1} & a_{2} & \ddots & & \vdots \\ & \ddots & \ddots & \ddots & \\ \vdots & & \ddots & \ddots & b_{N-1} \\ 0 & & & c_{N-1} & a_{N}\end{array}\right]$

Lanczos algorithm

Key quantity: response function $\chi(\omega)_{\mathcal{A}, \mathcal{B}}=\boldsymbol{r} \cdot\left(\mathcal{L}+\omega^{2}\right)^{-1} \cdot \boldsymbol{p}$

Lanczos algorithm

Tridiagonal form

Full inversion scales as $\left(\mathbf{N}^{2}\right)^{3}$

$\left.\begin{array}{cccc}b_{1} & \cdots & \cdots & 0 \\ a_{2} & \ddots & & \vdots \\ \ddots & \ddots & \ddots & \\ & \ddots & \ddots & b_{N-1} \\ & & c_{N-1} & a_{N}\end{array}\right]$

$$
\begin{gathered}
\boldsymbol{p}_{1}=\frac{\boldsymbol{p}}{\sqrt{\boldsymbol{p} \cdot \boldsymbol{p}}} \quad \boldsymbol{r}_{1}=\boldsymbol{r} \frac{\sqrt{\boldsymbol{p} \cdot \boldsymbol{p}}}{\boldsymbol{r} \cdot \boldsymbol{p}} \longrightarrow \boldsymbol{p}_{\mathbf{1}} \cdot \boldsymbol{r}_{\mathbf{1}}=1 \\
a_{k}=\boldsymbol{r}_{k} \cdot \mathcal{L} \cdot \boldsymbol{p}_{k} \\
b_{k} \boldsymbol{p}_{k+1}=\left(\mathcal{L}-a_{k}\right) \cdot \boldsymbol{p}_{k}-c_{k-1} \boldsymbol{p}_{k-1} \\
c_{k} \boldsymbol{r}_{k+1}=\left(\mathcal{L}-a_{k}\right) \cdot \boldsymbol{r}_{k}-b_{k-1} \boldsymbol{r}_{k-1} \\
\boldsymbol{p}_{k} \cdot \boldsymbol{r}_{l}=\delta_{k l} \quad \boldsymbol{S}=\left[\begin{array}{llll}
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \cdots & \boldsymbol{p}_{N}
\end{array}\right] \quad \boldsymbol{S}^{-1}=\left[\begin{array}{c}
\boldsymbol{r}_{1} \\
\boldsymbol{r}_{2} \\
\cdots \\
\boldsymbol{r}_{N}
\end{array}\right]
\end{gathered}
$$

Lanczos algorithm

$$
\boldsymbol{p}_{k} \cdot \boldsymbol{r}_{l}=\delta_{k l} \quad \boldsymbol{S}=\left[\begin{array}{llll}
\boldsymbol{p}_{1} & \boldsymbol{p}_{2} & \ldots & \boldsymbol{p}_{N}
\end{array}\right] \quad \boldsymbol{S}^{-1}=\left[\begin{array}{c}
\boldsymbol{r}_{1} \\
\boldsymbol{r}_{2} \\
\ldots \\
\boldsymbol{r}_{N}
\end{array}\right]
$$

$$
\begin{aligned}
\begin{array}{l}
\text { Response in the } \longrightarrow \chi(\omega)_{\mathcal{A}, \mathcal{B}} \\
\text { Lanczos basis }
\end{array} & =(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\boldsymbol{S}^{-1} \cdot\left(\mathcal{L}+\omega^{2}\right)^{-1} \cdot \boldsymbol{S}\right] \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1} \\
& =(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\boldsymbol{S}^{-1} \cdot\left(\mathcal{L}+\omega^{2}\right) \cdot \boldsymbol{S}\right]^{-1} \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1} \\
& =(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\mathcal{T}+\omega^{2}\right]^{-1} \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1} \\
& =(\boldsymbol{r} \cdot \boldsymbol{p})\left[\left(\boldsymbol{T}+\omega^{2}\right)^{-1}\right]_{11}
\end{aligned}
$$

Lanczos algorithm

Response in the
$\longrightarrow \chi(\omega)_{\mathcal{A}, \mathcal{B}}=(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\boldsymbol{S}^{-1} \cdot\left(\mathcal{L}+\omega^{2}\right)^{-1} \cdot \boldsymbol{S}\right] \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1}$
$=(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\boldsymbol{S}^{-1} \cdot\left(\mathcal{L}+\omega^{2}\right) \cdot \boldsymbol{S}\right]^{-1} \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1}$
$=(\boldsymbol{r} \cdot \boldsymbol{p}) \boldsymbol{r}_{1} \cdot \boldsymbol{S} \cdot\left[\boldsymbol{T}+\omega^{2}\right]^{-1} \cdot \boldsymbol{S}^{-1} \cdot \boldsymbol{p}_{1}$
$=(\boldsymbol{r} \cdot \boldsymbol{p})\left[\left(\boldsymbol{\mathcal { T }}+\omega^{2}\right)^{-1}\right]_{11}$

Recursive 2×2 inversion

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{11}^{-1}=\left(A-B \cdot D^{-1} \cdot C\right)^{-1}
$$

$$
\mathcal{T}+\omega^{2}=
$$

B

$a_{1}+\omega^{2}$
c_{1}
\vdots
0

- No MD

- Unbiased (ab-initio)
- Low-symm
- What is the response function?

$$
\chi(\omega)_{\mathcal{A}, \mathcal{B}}=(\boldsymbol{r} \cdot \boldsymbol{p})\left(\underline{\omega^{2}+a_{1}}-\frac{b_{1} c_{1}}{\omega^{2}+a_{2}-\frac{b_{2} c_{2}}{\omega^{2}+\ldots}}\right)^{-1}
$$

TD-SCHA response function

What we see in exp are TDSCHA phonons not the SCHA ones

TD-SCHA infrared

Dipole-dipole response function!

High-pressure molecular hydrogen C2c

$0^{06}{ }^{00}{ }^{06} 6$

$\cdots 000 \cdot$

- 9 a 9 -

DMC

High-pressure molecular hydrogen C2c

High-pressure molecular hydrogen C2c

TD-SCHA Raman

polarizability-polarizability response function!

TD-SCHA Ice XI

Bubble approximation = no 4-phonon vertex

TD-SCHA Raman in Ice XI

TD-SCHA Ice XI

Spectral function

- Translational modes
- Librations
- Narrow bending
- Stretching

Overtones: librations + bending, stretching + stretching

TD-SCHA Ice XI

Inter-molecular soft H bonds + intra-molecular hard covalent OH

Description of acoustic phonons is key in thermal transport

Conclusions

- Harmonic vs SCHA vs TDSCHA = physical
- Scattering vertex
- Higher-order phonon response/perturbation without DFPT
- Flexible response function (Neutron, X-ray) for position-dependent perturbations

Thank you for the attention!

$\underset{\text { UNIVERSITÀ DI ROMA }}{\text { SAPTENAA }}$

European Research Council

Established by the European Commission

High-pressure molecular hydrogen C2c

Harmonic approximation VS SCHA

Time-Dependent SCHA

- Equations for equal-time correlators (free parameters)

$$
\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}=\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)}^{-1} \cdot\left\langle\delta \widetilde{\boldsymbol{R}} \frac{\partial V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
$$

Only forces needed for full evolution

$$
\begin{aligned}
& \frac{d}{d t}\langle\widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)}=\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)} \\
& \frac{d}{d t}\langle\widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}=-\left\langle\frac{\partial V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \\
& \frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)}=\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}+\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \\
& \frac{d}{d t}\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}=-\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \cdot\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\mathrm{tot})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)} \\
& \frac{d}{d t}\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}=\langle\delta \widetilde{\boldsymbol{P}} \delta \widetilde{\boldsymbol{P}}\rangle_{\widetilde{\rho}(t)}-\langle\delta \widetilde{\boldsymbol{R}} \delta \widetilde{\boldsymbol{R}}\rangle_{\widetilde{\rho}(t)} \cdot\left\langle\frac{\partial^{2} V^{(\text {tot })}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{\widetilde{\rho}(t)}
\end{aligned}
$$

TD-SCHA propagators

Each propagator correspond to an element of the inverse tensor propagator

Can we ask more?

Is this perturbation theory?

$$
\stackrel{(3)}{\boldsymbol{D}}=\left\langle=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\mathbf{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \stackrel{(4)}{\boldsymbol{D}}=\square=\left\langle\frac{\partial V^{(\mathrm{BO})}}{\partial \widetilde{\boldsymbol{R}} \partial \widetilde{\mathbf{R}} \partial \widetilde{\mathbf{R}} \partial \widetilde{\boldsymbol{R}}}\right\rangle_{(0)} \quad\right. \text { SCHA averages }
$$

DFT anharmonic tensor computed at SCHA positions

SCHA phonons vs Harmonic phonons loop=

