AA
w

SSCHJ

Stochastic Self-Consistent
Harmonic Approximation

SSCHA SCHOOL 2023

R. Bianco, D. Dangic, l. Errea, G. Marchese,

G. Marini, D. Martinez, L. Monacelli

July 19, 2023

CONTENTS:

Software Installation

I.1 Requirements o v i v i e e e e e e e e e e e e e

1.2 SSCHA . . . e e
1.3 TDSCHA e
1.4 Installge-5.1.0_elph
15 EPIq

1.6 fermisurfer installation
1.7 F3ToyModel installation

Hands-on-session 1 - First SSCHA simulations: free energy and structural relaxations

2.1 The free energy of gold: a simulation in the NVT ensemble
2.2 Running in the NPT ensemble: simulating thermal expansion
2.3 Ab initio calculation with the SSCHA code

Hands-on-session 2 - Advanced free energy minimization

3.1 Manual submission e e e e e
3.2 Automatic submission withacluster

Hands-on-session 3 - Calculations of second-order phase transitions with the SSCHA

4.1 Structural instability: calculation of the Hessian
4.2 Second order phase transition oL oL

Hands-on-session 4 - Calculation of spectral properties with the Self Consistent Harmonic

Approximation

5.1 Theoretical introduction e e
5.2 Calculationson PbTe e

Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent Self Consistent

Harmonic Approximation

6.1 Computing the IR signal inICE
6.2 Ramanresponse i e e e e e e e e e e e e

Hands-on-session 6 - The SSCHA with machine learning potentials

7.1 Hands-on €XerciSe v v i e e e e e e e e e e e e

Hands-on-session 7: Calculation of the electron-phonon interaction and superconducting

properties with the SSCHA

8.1 Calculation of the electron-phonon matrix elements
82 TheSSCHA calculation
8.3 Combine the SSCHA dynamical matrices with the electron-phonon matrix elements . .

27
27
34

41
41
48

57
57
59

77
77
84

87
87

95
95
99
99

10

11

8.4 Solution of isotropic Migdal-Eliashberg equations 102
8.5 Importantremarks L 103

Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling related properties105

9.1 Introduction e e 105
0.2 Requirements i e e e e e 105
9.3 AboutEPIq e 107
9.4 Let’s practice: calculation of electron-phonon coupling related properties for doped
monolayer MoSa e e e e e e e 109
Hands-on-session 9 - Thermal conductivity calculations with the SSCHA 119
10.1 Lattice thermal conductivity of silicon 119
10.2 Lattice thermal conductivityof GeTe 123
Apendix: the Ekhi cluster 127

11.1 ekhi.cfm.ehu.es e 127

CHAPTER
ONE

SOFTWARE INSTALLATION

This installation guide here is valid for Linux machines as well as MacOS with intel processors.

Users of Windows can use the virtual machine provided by Quantum Mobile available here. The instruc-
tions to install this virtual machine are provided in that link. However, you will need to increase the RAM
allocated to the virtual machine to at least 4Gb to be able to run all the tutorials on it. Once you have
installed the virtual machine, follow the instructions below to install all the needed software to work on
the tutorials.

1.1 Requirements

Most of the codes require a fortran or C compiler and MPI configured. Here we install all the requirements
to properly setup the SSCHA code. To properly compile and install the SSCHA code, you need a fortran
compiler and LAPACK/BLAS available.

On Debian-based Linux distribution, all the software required is installed with (Tested on Quantum Mo-
bile and ubuntu 20.04):

sudo apt update
sudo apt install libblas-dev liblapack-dev liblapacke-dev gfortran openmpi-bin

Note that some of the name of the library may change slightly in different linux versions or on MacOS.

1.1.1 Python installation

SSCHA is a Python library and program. Most linux distribution come with python already installed,
however, for a performance boost, it is usually better to use the python distribution provided by the
anaconda environment. The Quantum Mobile virtual machine already comes with anaconda installed.
In case you are running on your own machine, anaconda python can be downloaded and installed from
[www.anaconda.com/download]

Once you installed the software, at the beginning of your terminal you should see a

(base) $

The (base) identify the current anaconda environment. It may be necessary to restart the terminal after
the installation to have Anaconda start properly.

If you are not using anaconda but the default python from the linux distribution, it may be necessary to
install the python header files to correctly compile the SSCHA extension

https://quantum-mobile.readthedocs.io/en/latest/releases/versions/23.04.03.html

SSCHA SCHOOL 2023

sudo apt install python-dev

1.1.2 Install python packages

Most of the code can be easily installed with the following pip command:

pip install ase spglib quippy-ase

The Atomic Simulation Environment (ASE), employed to read and write structure files. SPGLIB is used
to recognize the space-group and perform symmetry anaylisys. Quippy is employed to train a machine-
learning force field.

1.2 SSCHA

Once the prerequisites have been installed, python-sscha can be downloaded and installed with

pip install cellconstructor python-sscha

Alternatively, it is possible to use the most recent version from the github repository [https://github.com/
SSCHAcode], under CellConstructor and python-sscha repositories.

The installation is performed in this case with

python setup.py install

1.2.1 Personalize the compiler

If you have multiple compilers installed, and want to force pip to employ a specific fortran compile, you
can specify its path in the FC environment variable. Remember that the compiler employed to compile
the code should match with the linker, indicated in the LDSHARED variable.

For example

FC=gfortran LDSHARED=gfortran pip install cellconstructor python-sscha

For the development version of the code, subtitute the pip call with the python setup.py install.

1.2.2 Running the testsuite

To be sure everything is working, you can run the testsuite. Make sure to install the pytest package with

pip install pytest

Then run the testsuite with

cellconstrutor_test.py

If it works without errors, then the code has been correctly installed.

2 Chapter 1. Software Installation

https://github.com/SSCHAcode
https://github.com/SSCHAcode

SSCHA SCHOOL 2023

1.3 TDSCHA

As for the SSCHA code, also TDSCHA is distributed on PyPi

pip install tdscha

Alternatively, the code to compute Raman and IR spectrum can be downloaded from GitHub at [https:
//github.com/SSCHAcode/tdscha]

To install the github code, that enables the MPI parallelization also without the JULIA speedup, you can
use:

git clone https://github.com/SSCHAcode/tdscha.git
cd tdscha
MPICC=mpicc python setup.py install

where mpicc is a valid mpi ¢ compiler (the specification of MPICC can be dropped, but parallelization
will not be available aside for the julia mode discussed below).

1.3.1 JULIA speedup enhancement
The TDSCHA code exploits JULIA to speedup the calculation by a factor of 10x-15x with the same
number of processors.

To have it working, download and install julia from [https://julialang.org/downloads/]. Alternatively, to
install julia on linux we can employ juliaup:

curl -fsSL https://install.julialang.org | sh

Hit enter when asked to install julia.

To use julia, either open a new terminal, or hit:

source ~/.bashrc

Then, open a terminal and type julia. Inside the julia prompt, type] The prompt should change color
and display the julia version ending with pkg>

Install the required julia libraries

pkg> add SparseArrays, LinearAlgebra, InteractiveUtils, PyCall

This should install the required libraries. press backspace to return to the standard julia prompt and exit
with

julia> exit()

Then, install the python bindings for julia with

pip install julia

Now, you should be able to exploit the julia speedup in the TDSCHA calculations. It is not required to
install julia before TDSCHA, it can also be done in a later moment.

1.3. TDSCHA 3

https://github.com/SSCHAcode/tdscha
https://github.com/SSCHAcode/tdscha
https://julialang.org/downloads/

SSCHA SCHOOL 2023

1.3.2 MPI Parallelization

MPI parallelization is not necessary for the tutorial, however you may like to configure it in practical
calculation to further speedup the code. For production runs, it is suggested to combine the mpi paral-
lelization with the julia speedup.

The TDSCHA code exploits the mpi parallelization using mpi4py, This assumes that you have a MPI
C compiler installed. This is done by installing the library openmpi-bin which we installed in the
requirements.

You can now install mpidpy

pip install mpidpy

The parallelization is automatically enabled in the julia version and if mpidpy is available. However, to
run the parallel code without the julia speedup, you need to recompile the code from the github repository
as (not the version installed with pip)

MPICC=mpicc python setup.py install

e sure that at the end of the installation no error are displayed, and the write PARALLEL ENVIRON-
MENT DECTECTED SUCCESFULLY is displayed. Note that, if using the julia enhanced version, the
last command is not required, and you can install only mpidpy.

1.4 Install ge-5.1.0_elph

In order to install this old version of Quantum Espresso, which is tuned to allow the combination of
electron-phonon matrix elements with SSCHA dynamical matrices, follow these instructions:

git clone https://github.com/SSCHAcode/qe-5.1.0_elph.git
cd ge-5.1.0_elph

./configure

make all

It may happen that the compilation fails with a message like

Error: Rank mismatch between actual argument at...

In this case you need to edit the make.sys file with the following command

sed -i "s/FFLAGS = -03 -g/FFLAGS = -03 -g -fallow-argument-
—mismatch/g" make.sys

and rerun

make all

again.

4 Chapter 1. Software Installation

SSCHA SCHOOL 2023

1.5 EPIq

The EPIq code is hosted in a git repository. The last stable version can be downloaded here.

Once the source code has been downloaded, unzip the archive and enter the epiq main folder
(cd epiq). EPIq has very few prerequisites:

e BLAS and LAPACK libraries.
* Any MPI fortran compiler (e.g. mpif90 for openmpi).

Then compile EPIq. Enter in the source directory and run make as:

cd epiq
make all

In some cases (like in quantum mobile), the compilation may fail. If it fails with error:

gfortran: error: unrecognized command line option ‘-fallow-argument-mismatch’;
— did you mean ‘-Wno-argument-mismatch’?

This can be fixed replacing -fallow-argument-mismatch with -Wno-argument-mismatch in the
make.sys file. This can be done automatically with the following command:

sed -i 's/-fallow-argument-mismatch/-Wno-argument-mismatch/g' make.sys

Then run again make all.

If everything went smoothly, an executable file named epiq.x will be created in the bin folder. If the
compilation was not successful, this probabily means that the configure could not find the necessary
libraries/compiler. You should manually modify the make.sys file in order to correctly locate them.

1.6 fermisurfer installation

Fermisurfer is a program for the visualization of Fermi surface resolved physical quantities. First, install
preresquisites with:

sudo apt-get install -y libwxgtk3.0-gtk3-dev

Download fermisurfer here and extract the tar archive:

tar -xsf fermisurfer-2.1.0.tar.gz

Finally, enter the fermisurfer directory and install with:

./configure
make
sudo make install

1.5. EPIq 5

https://gitlab.com/the-epiq-team/epiq/-/releases/EPIq-1.0
https://osdn.net/projects/fermisurfer/releases/71529

SSCHA SCHOOL 2023

1.7 F3ToyModel installation

F3ToyModel is a force-field that can mimic the physics of ferroelectric transitions in FCC lattices. All
preresquisites are met with the SSCHA installation.

The code for this force-field can be downloaded from the SSCHA github here with the command:

git clone https://github.com/SSCHAcode/F3ToyModel.git

Now enter the F3ToyModel directory and install with:

python setup.py install

6 Chapter 1. Software Installation

https://github.com/SSCHAcode/F3ToyModel

CHAPTER
TWO

HANDS-ON-SESSION 1 - FIRST SSCHA SIMULATIONS: FREE
ENERGY AND STRUCTURAL RELAXATIONS

In this hands-on we provide ready to use examples to setup your first SSCHA calculation.

2.1 The free energy of gold: a simulation in the NVT ensemble

This simple tutorial explains how to setup a SSCHA calculation starting just from the structure, in this
case a cif file we downloaded from the [Materials Project](https://materialsproject.org/materials/mp-81/)
database that we can find in the 01_First_SSCHA_simulations directory.

Starting from the Gold structure in the primitive cell, to run the SSCHA we need:
* Compute the harmonic phonons (dynamical matrix)
* Remove imaginary frequencies (if any)
* Run the SSCHA

At the very beginning, we simply import the sscha libraries, cellconstructor, the math libraries and the
force field. This is done in python with the import statemets.

Import the sscha code
import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Relax, sscha.Utilities

Import the cellconstructor library to manage phonons
import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.Structure, cellconstructor.calculators

Import the force field of Gold
import ase, ase.calculators
from ase.calculators.emt import EMT

Import numerical and general pourpouse libraries
import numpy as np, matplotlib.pyplot as plt
import sys, os

The first thing we do is to initialize a cellconstructor structure from the cif file downloaded from the
material database (Au.cif). We initialize the EMT calculator from ASE, and relax the structure:

https://materialsproject.org/materials/mp-81/

SSCHA SCHOOL 2023

gold_structure = CC.Structure.Structure()
gold_structure.read_generic_file("Au.cif")

Get the force field for gold
calculator = EMTQ)

Relax the gold structure
relax = CC.calculators.Relax(gold_structure, calculator)
gold_structure_relaxed = relax.static_relax()

In the case of Gold the relaxation is useless, as it is a FCC structure with Fm-3m symmetry group and 1
atom per primitive cell. This means the atomic positions have no degrees of freedom, thus the relaxation
will end before even start.

Next, we perform the harmonic phonon calculation using cellconstructor and a finite displacement ap-
proach:

gold_harmonic_dyn = CC.Phonons.compute_phonons_finite_displacements(gold_
—structure_relaxed, calculator, supercell = (4,4,4))

Impose the symmetries and

save the dynamical matrix in the quantum espresso format
gold_harmonic_dyn.Symmetrize()
gold_harmonic_dyn.save_qge(''gold_harmonic_dyn")

The method compute_phonons_finite_displacements is documented in the CellConstructor guide. It re-
quires the structure (in this case gold_structure_relaxed), the force-field (calculator) and the supercell
for the calculation. In this case we use a 4x4x4 (equivalent to 64 atoms). This may not be sufficient to
converge all the properties, especially at very high temperature, but it is just a start.

Note that compute_phonons_finite_displacements works in parallel with MPI, therefore, if the script is
executed with mpirun -np 16 python myscript.py it will split the calculations of the finite displacements
across 16 processors. You need to have mpidpy installed. However, in this case, due to the high symme-
tries, only one calculation is reqired to get the harmonic dynamical matrix, therefore the parallelization
is useless.

After computing the harmonic phonons in gold_harmonic_dyn, we impose the correct symmetrization
and the acousitic sum rule with the Symmetrize method, and save the result in the quantum ESPRESSO
format with save_ge.

We are ready to submit the SSCHA calculation in the NVT ensemble.
The important parameters are:

* The temperature

* The number of random configurations in the ensemble

* The maximum number of iterations

These parameters are almost self-explaining. In contrast with Molecular Dynamics (MD) or Metropolis-
Monte Carlo (MC) calculations, where the equilibrium probability distribution is sampled from a dy-
namical evolution of a structure, the SSCHA encodes the whole probability distribution as an analytical
function. Therefore, to compute properties, we can generate on the fly the configurations that sample the
equilibrium distribution.

8Chapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

Structure \

Relax f—M™ Dyn

Calculator

SN j ~

Ensemble Relax

Calculator

Fig. 2.1.1: Workflow of the SSCHA objects for a free energy minimization.

The code that sets up and perform the SSCHA is the following:

TEMPERATURE = 300
N_CONFIGS = 50
MAX_TITERATIONS = 20

Initialize the random ionic ensemble
ensemble = sscha.Ensemble.Ensemble(gold_harmonic_dyn, TEMPERATURE)

Initialize the free energy minimizer
minim = sscha.SchaMinimizer.SSCHA_Minimizer (ensemble)
minim.set_minimization_step(0.01)

Initialize the NVT simulation
relax = sscha.Relax.SSCHA(minim, calculator, N_configs = N_CONFIGS,
max_pop = MAX_ITERATIONS)

Define the I/0 operations

To save info about the free energy minimization after each step
ioinfo = sscha.Utilities.IOInfo()

ioinfo.SetupSaving("minim_info")
relax.setup_custom_functions(custom_function_post = ioinfo.CFP_SaveAll)

Run the NVT simulation
relax.relax(get_stress = True)

Save the final dynamical matrix
relax.minim.dyn.save_ge(''sscha_T300_dyn")

2.1. The free energy of gold: a simulation in the NVT ensemble 9

SSCHA SCHOOL 2023

In the previous code we defined the main object to run the simulation:

* ensemble (sscha.Ensemble. Ensemble), represents the ensemble of ionic configurations. We initial-
ize it with the dynamical matrix (which represent how much atoms fluctuate around the centroids)
and the temperature.

* minim (sscha.SchaMinimizer.SSCHA_Minimizer) performs the free energy minimization. It con-
tains all the info regarding the minimization algorithm, as the initial timestep (that here we set to
0.01). You can avoid setting the time-step, as the code will automatically guess the best value.

* relax (sscha.Relax.SSCHA) automatizes the generation of ensembles, calculation of energies and
forces and the free energy minimization to perform a NVT or NPT calculation. To initialize it, we
pass the minim (which contains the ensemble with the temperature), the force-field (calculator),
the number of configurations N_configs and the maximum number of iterations.

In this example, most of the time is spent in the minimization, however, if we replace the force-field with
ab-initio DFT, the time to run the minimization is negligible with respect to the time to compute energies
and forces on the ensemble configurations. The total (maximum) number of energy/forces calculations
is equal to the number of configurations times the number of iterations (passed through the max_pop
argument).

The calculation is submitted with relax.relax(). However, before running the calculation we introduce an-
other object, the IOInfo. This tells the relax to save information of the free energy, its gradient and the an-
harmonic phonon frequencies during the minimization in the files minim_info.dat and minim_info.fregs.
It is not mandatory to introduce them, but it is very usefull as it allows to visualize the minimization
while it is running.

The full input file is:

Import the sscha code
import sscha, sscha.Ensemble, sscha.SchaMinimizer, sscha.Relax, sscha.
—Utilities

Import the cellconstructor library to manage phonons
import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.Structure, cellconstructor.calculators

Import the force field of Gold
import ase, ase.calculators
from ase.calculators.emt import EMT

Import numerical and general pourpouse libraries
import numpy as np, matplotlib.pyplot as plt
import sys, os

i

Here we load the primitive cell of Gold from a cif file.
And we use CellConstructor to compute phonons from finite differences.
The phonons are computed on a q-mesh 4x4x4

e

gold_structure = CC.Structure.Structure()
gold_structure.read_generic_file("Au.cif")

(continues on next page)

1Chapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

(continued from previous page)

Get the force field for gold
calculator = EMTQ)

Relax the gold structure (useless since for symmetries it is already.
—relaxed)

relax = CC.calculators.Relax(gold_structure, calculator)
gold_structure_relaxed = relax.static_relax()

Compute the harmonic phonons

NOTE: if the code is run with mpirun, the calculation goes in parallel
gold_harmonic_dyn = CC.Phonons.compute_phonons_finite_displacements(gold_
—structure_relaxed, calculator, supercell = (4,4,4))

Impose the symmetries and

save the dynamical matrix in the quantum espresso format
gold_harmonic_dyn.Symmetrize()
gold_harmonic_dyn.save_qge("harmonic_dyn")

If the dynamical matrix has imaginary frequencies, remove them
gold_harmonic_dyn.ForcePositiveDefinite()

mrrn

gold_harmonic_dyn is ready to start the SSCHA calculation.

Now let us initialize the ensemble, and the calculation at 300 K.
We will run a NVT calculation, using 100 configurations at each step

AL

TEMPERATURE = 300
N_CONFIGS = 50
MAX_ITERATIONS = 20

Initialize the random ionic ensemble
ensemble = sscha.Ensemble.Ensemble(gold_harmonic_dyn, TEMPERATURE)

Initialize the free energy minimizer
minim = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)
minim.set_minimization_step(0.01)

Initialize the NVT simulation
relax = sscha.Relax.SSCHA(minim, calculator, N_configs = N_CONFIGS,
max_pop = MAX_ITERATIONS)

Define the I/0 operations

To save info about the free energy minimization after each step
ioinfo = sscha.Utilities.IOInfo()
ioinfo.SetupSaving("minim_info")

(continues on next page)

2.1. The free energy of gold: a simulation in the NVT ensemble 11

SSCHA SCHOOL 2023

(continued from previous page)

relax.setup_custom_functions(custom_function_post = ioinfo.CFP_SaveAll)

Run the NVT simulation (save the stress to compute the pressure)
relax.relax(get_stress = True)

Save the final dynamical matrix

And print in stdout the info about the minimization
relax.minim. finalize()
relax.minim.dyn.save_ge("sscha_T{}_dyn".format (TEMPERATURE))

Now save the file as sscha_gold.py and execute it with:

$ python sscha_gold.py > output.log

And that’s it. The code will probably take few minutes on a standard laptop computer. Congratulations!
You run your first SSCHA simulation!

If you open a new terminal in the same directory of the SSCHA submission, you can plot the info during
the minimization. Starting from version 1.2, we provide a visualization utilities installed together with
the SSCHA. Simply type

$ sscha-plot-data.py minim_info

You will see two windows.

£
=]

6000 -

&

4000 A

FC gradient

A
iy

2000 A

Free energy / unit cell [meV]

A
=

le-15

Eﬂ_
%) 4 4
a5 ’\ E
= S 2
= 40 1]
g ob
I v 0
g 7 !
'4':1 = ,2,
g 30 2
= 951
| i
251 -
T T T T T T
0 20 40] 20 40

Good minimization steps Good minimization steps

Fig. 2.1.2: Minimization data of Gold.

In Fig. 2.1.2 we have all the minimization data. On the top-left panel, we see the free energy. As expected,
it decreases (since the SSCHA is minimizing it). You can see that at certain values of the steps there are
discontinuities. These occurs when the code realizes that the ensemble on which it is computing is
no more good and a new one is generated. The goodness of an ensemble is determined by the Kong-
Liu effective sample size (bottom-left). When it reaches 0.5 of its initial value (equal to the number

1Zhapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

of configurations), the ensemble is extracted again and a new iteration starts. You see that in the last
iteration, the code stops before getting to 25 (0.5 - 50). This means that the code converged properly: the
gradient reached zero when the ensemble was still good.

On the right-side you see the free energy gradients, which must go to zero to converge. The top-right is
the gradient of the SSCHA dynamical matrix, while on bottom-right there is the gradient of the average
atomic positions.

Indeed, since the gold atomic positions are all fixed by symmetries, it is always zero (but it will be
different from zero in more complex system).

Frequcency evolution

Frequency [cm-1]
&
\ |

20 +

Good minimization steps

Fig. 2.1.3: All the SSCHA phonon frequencies as a function of the step in the NVT simulation.

Instead, Fig. 2.1.3 represents the evolution of the SSCHA phonon frequencies. Here, all the frequencies
in the supercell (at each q point commensurate with the calculation) are shown.

NOTE

The sscha auxiliary frequencies in Fig. 2.1.3 are not the real frequencies observed in experiments, but
rather are linked to the average displacements of atoms along that mode.

By looking at how they change you can have an idea on which phonon mode are more affected by anhar-
monicity. In this case, it is evident that Gold is strongly anharmonic and that the temperature makes all
the phonon frequencies harder.

At the end of the simulation, the code writes the final dynamical matrix in the quantum espresso file
format: sscha_T300_dynX where X goes over the number of irreducible q points.

In the next section, we analyze in details each section of the script to provide a bit more insight on the
simulation, and a guide to modify it to fit your needs and submit your own system.

2.1. The free energy of gold: a simulation in the NVT ensemble 13

SSCHA SCHOOL 2023

2.1.1 Plot the phonon dispersion
Now that the SSCHA minimization ended, we can compare the harmonic and anharmonic phonon dis-
persion of Gold.

To this purpouse, we can simply run a script like the following. You find a copy of this script already in
Examples/ThermodynamicsOfGold/plot_dispersion.py.

You can use it even in your simulation, simply edit the value of the uppercase keyword at the beginning
of the script to match your needs.

Import the CellConstructor library to plot the dispersion
import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.ForceTensor

Import the numerical libraries and those for plotting
import numpy as np
import matplotlib.pyplot as plt

import sys, os

Let us define the PATH in the brilluin zone and the total number of points
PATH = "GXWXKGL"
N_POINTS = 1000

Here we define the position of the special points
SPECIAL_POINTS = {"G": [0,0,0],

X": [0, .5, .5],

L": [.5, .5, .5],

"w': [.25, .75, .5],

"K": [3/8., 3/4., 3/8.1}

The two dynamical matrix to be compared
HARM_DYN = 'harmonic_dyn'
SSCHA_DYN = 'sscha_T300_dyn'

The number of irreducible q points
i.e., the number of files in which the phonons are stored
NQIRR = 13

Load the harmonic and sscha phonons
harmonic_dyn = CC.Phonons.Phonons(HARM_DYN, NQIRR)
sscha_dyn = CC.Phonons.Phonons(SSCHA_DYN, NQIRR)

Get the band path

gpath, data = CC.Methods.get_bandpathCharmonic_dyn.structure.unit_cell,
PATH,
SPECIAL_POINTS,
N_POINTS)

(continues on next page)

1€hapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

(continued from previous page)

xaxis, xticks, xlabels = data # Info to plot correclty the x axis

Get the phonon dispersion along the path

harmonic_dispersion = CC.ForceTensor.get_phonons_in_gpathCharmonic_dyn, gpath)
sscha_dispersion = CC.ForceTensor.get_phonons_in_gpath(sscha_dyn, qgpath)
nmodes = harmonic_dyn.structure.N_atoms * 3

Plot the two dispersions

plt.figure(dpi = 150)

ax = plt.gca(Q)

for i in range(nmodes):

1bl=None
lblsscha = None
if i == 0:
1bl = 'Harmonic'

1blsscha = "SSCHA'

ax.plot(xaxis, harmonic_dispersion[:,i], color='k',
ls="dashed', label=1bl)

ax.plot(xaxis, sscha_dispersion[:,i],
color="r', label=1blsscha)

Plot vertical lines for each high symmetry points
for x in xticks:

ax.axvline(x, 0, 1, color = "k", 1w = 0.4)
ax.axhline(®, ®, 1, color = 'k', 1s = ":', 1w = 0.4)

Set the x labels to the high symmetry points
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels)

ax.set_xlabel ("Q path™)
ax.set_ylabel ("Phonons [cm-1]")

ax.legend()
plt.tight_layout()

plt.savefig("dispersion.png")
plt.show()

If we save the script as plot_dispersion.py in the same directory of the calculation, we can run it with

$ python plot_dispersion.py

2.1. The free energy of gold: a simulation in the NVT ensemble 15

SSCHA SCHOOL 2023

80 A
60 - =T _
- P
m ~———
o 40 A1
c
[s]
-
o
20 A
——=- Harmonic
0 —— SSCHA
| |
r X W X K r L
Q path

Fig. 2.1.4: Comparison between the SSCHA and the harmonic phonon dispersion of Gold.

The script will plot the figure of the phonon dispersion Fig. 2.1.4. It is quite different from the experi-
mental one because of the poor accuracy of the force field, however, the SSCHA results is much closer
to the experimental value.

Exercise

Try to perform the simulation of Gold but at a different temperature, plot then the SSCHA phonon
dispersion as a function of temperature.

How does the phonon bands behave if the temperature is increased? Do they become more rigid
(energy increases) or softer?

2.2 Running in the NPT ensemble: simulating thermal expansion

Now that you have some experience with the NVT simulation we are ready for the next step: NPT, or
relaxing the lattice.

With python-sscha it is very easy to run NPT simulation, you simply have to replace the line of the NVT
script with the target pressure for the simulation:

Replace the line

relax.relax(get_stress = True)
with
relax.vc_relax(target_press = 0)

And that is all! The target pressure is expressed in GPa, in this case 0 is ambient conditions (1 atm =
0.0001 GPa)

1€hapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

You can also perform NVT simulation with variable lattice parameters: In this case the system will
constrain the total volume to remain constant, but the lattice parameter will be optimized (if the system
is not cubic and has some degrees of freedom, which is not the case for Gold).

The NVT ensemble with variable lattice parameters (cell shape) is

Replace the line

relax.vc_relax(target_press = 0)
with

relax.vc_relax(fix_volume = True)

Indeed, this is a NVT simulation, therefore there is no need to specify the target pressure.

The following script, we run the NPT ensemble at various temperatures, each time starting from the
previous ensemble, to follow the volume thermal expansion of gold.

This script assume you already performed the NVT calculation, so that we can start from that results,
and avoid the harmonic calculation (It is always a good practice to start with NVT simulation and then
run NPT from the final result).

Import the sscha code
import sscha, sscha.Ensemble, sscha.SchaMinimizer, sscha.Relax
import sscha.Utilities

Import the cellconstructor library to manage phonons
import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.Structure, cellconstructor.calculators

Import the force field of Gold
import ase, ase.calculators
from ase.calculators.emt import EMT

Import numerical and general pourpouse libraries
import numpy as np, matplotlib.pyplot as plt
import sys, os

Define the temperature range (in K)
T_START = 300

T_END = 1000

DT = 50

N_CONFIGS = 50
MAX_ITERATIONS = 10

Import the gold force field
calculator = EMTQ)

Import the starting dynamical matrix (final result of get_gold free_energy.

~py)
dyn = CC.Phonons.Phonons("sscha_T300_dyn", ngirr = 13)

(continues on next page)

2.2. Running in the NPT ensemble: simulating thermal expansion 17

SSCHA SCHOOL 2023

(continued from previous page)

Create the directory on which to store the output

DIRECTORY = "thermal_expansion"

if not os.path.exists(DIRECTORY):
os.makedirs("thermal_expansion")

We cycle over several temperatures
t = T_START

volumes = []
temperatures = []
while t <= T_END:
Change the temperature
ensemble = sscha.Ensemble.Ensemble(dyn, t)
minim = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)
minim.set_minimization_step(0.1)

relax = sscha.Relax.SSCHA(minim, calculator, N_configs = N_CONFIGS,
max_pop = MAX_ITERATIONS)

Setup the I/0

ioinfo = sscha.Utilities.IO0OInfo()

ioinfo.SetupSaving(os.path.join(DIRECTORY, "minim_t{}".format(t)))
relax.setup_custom_functions(custom_function_post = ioinfo.CFP_SaveAll)

Run the NPT simulation
relax.vc_relax(target_press = 0)

Save the volume and temperature
volumes.append(relax.minim.dyn.structure.get_volume())
temperatures.append(t)

Start the next simulation from the converged value at this temperature

relax.minim.dyn.save_ge(os.path. join(DIRECTORY,
"sscha_T{}_dyn".format(t)))

dyn = relax.minim.dyn

Print in standard output
relax.minim. finalize()

Update the temperature
t += DT

Save the thermal expansion

np.savetxt(os.path. join(DIRECTORY, "thermal_expansion.dat"),
np.transpose([temperatures, volumes]),
header = "Temperature [K]; Volume [AA3]™)

You can run the script as always with:

1€hapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

$ python thermal_expansion.py

And ... done!

This calculation is going to require a bit more time, as we run multiple SSCHA at several temperatures.
After it finishes, you can plot the results written in the file thermal_expansion/thermal_expansion.dat.

A simple script to plot the thermal expansion (and fit the volumetric thermal expansion value) is the
following

import numpy as np
import matplotlib.pyplot as plt

import scipy, scipy.optimize

Load all the dynamical matrices and compute volume
DIRECTORY = "thermal_expansion'
FILE = os.path.join(DIRECTORY, "thermal_expansion.dat")

Load the data from the final data file
temperatures, volumes = np.loadtxt(FILE, unpack = True)

Prepare the figure and plot the V(T) from the sscha data
plt.figure(dpi = 150)
plt.scatter(temperatures, volumes, label = "SSCHA data")

Fit the data to estimate the volumetric thermal expansion coefficient
def parabola(x, a, b, ©):

return a + b*x + c¥x**2
def diff_parab(x, a, b, ©):

return b + 2*c*x

popt, pcov = scipy.optimize.curve_fit(parabola, temperatures, volumes,
p® = [0,0,01)

Evaluate the volume thermal expansion
vol_thermal_expansion = diff_parab(300, *popt) / parabola(300, *popt)
plt.text(0.6, 0.2, r"$\alpha_v = "+"{:.1f}". format(vol_thermal_
—,expansion®le6)+r'"\times 1046 § K$A{-1}$",

transform = plt.gca().transAxes)

Plot the fit
t_ = np.linspace(np.min(temperatures), np.max(temperatures), 1000)

plt.plot(_t_, parabola(_t_, *popt), label = "Fit")

Adjust the plot adding labels, legend, and saving in eps
plt.xlabel ("Temperature [K]")
plt.ylabel(r"Volume [$\AAA3$]")

(continues on next page)

2.2. Running in the NPT ensemble: simulating thermal expansion 19

SSCHA SCHOOL 2023

(continued from previous page)

plt.legend()

plt.tight_layout()
plt.savefig("thermal_expansion.png")
plt.show()

17.7 A
— Fit
® SSCHA data

17.6 1

17.5 A

17.4 1

17.3 A

Volume [43]

17.2 A

a, =66.5x 10° K1

17.1 A

17.0 A

300 400 500 600 700 800 900 1000
Temperature [K]

Fig. 2.2.1: Thermal expansion of Gold. From the fit of the data we can compute the volumetric thermal
expansion coefficient (at 300 K).

We report the final thermal expansion in Fig. 2.2.1. The volumetric expansion coefficient «, is obtained
from the fit thanks to the thermodynamic relation:

v \dT) p

Also in this case, the result is quite off with experiments, due to the not completely realistic force-field
employed. To get a more realistic approach, you should use ab-initio calculations or a more refined
force-field.

2.3 Ab initio calculation with the SSCHA code

The SSCHA code is compatible with the Atomic Simulation Environment (ASE), which we employed
in the previous tutorial to get a fast force-field for Gold.

However, ASE already provides an interface with most codes to run ab initio simulations. The simplest
way of interfacing the SSCHA to an other ab initio code is to directly use ASE.

The only difference is in the definition of the calculator, in the first example of this chapter, the Gold
force field was defined as:

2Chapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

import ase
from ase.calculators.emt import EMT
calculator = EMTQ)

We simply need to replace these lines to our favourite DFT code. In this example we are going to use
quantum espresso, but the procedure for VASP, CASTEP, CRYSTAL, ABINIT, SIESTA, or your favourite
one are exatly the same (Refer to the official documentatio of ASE to the instruction on how to initialize
these calculators).

In the case of DFT, unfortunately, we cannot simply create the calculator in one line, like we did for EMT
force-field, as we need also to provide a lot of parameters, as pseudopotentials, the choice of exchange
correlation, the cutoff of the basis set, and the k mesh grid for Brilluin zone sampling.

In the following example, we initialize the quantum espresso calculator for Gold.

import cellconstructor.calculators
from ase.calculators.espresso import Espresso

Initialize the DFT (Quantum Espresso) calculator for gold
The input data is a dictionary that encodes the pw.x input file namelist
input_data = {

'control' : {
Avoid writing wavefunctions on the disk
'disk_io' : 'None',

Where to find the pseudopotential
'pseudo_dir' v

3,

'system' : {
Specify the basis set cutoffs
'ecutwfc' : 45, # Cutoff for wavefunction
'ecutrho' : 45*%4, # Cutoff for the density
Information about smearing (it is a metal)
'occupations' : 'smearing',
'smearing' : 'mv',
"degauss' : 0.03

3,

'electrons' : {
"conv_thr' : le-8

3

the pseudopotential for each chemical element
In this case just Gold
pseudopotentials = {'Au' : "Au_ONCV_PBE-1.0.oncvpsp.upf'}

the kpoints mesh and the offset

kpts = (1,1,1)
koffset = (1,1,1)

Prepare the quantum espresso calculator

(continues on next page)

2.3. Ab initio calculation with the SSCHA code 21

SSCHA SCHOOL 2023

(continued from previous page)

#calculator = CC.calculators.Espresso(input_data,

pseudopotentials,
kpts = kpts,
koffset = koffset)

calculator = Espresso(input_data = input_data, pseudopotentials =.
—pseudopotentials,

kpts = kpts, koffset =.
—koffset)

If you are familiar with the quantum espresso input files, you should recognize all the options inside the
input_data dictionary. For more options and more information, refer to the quantum ESPRESSO pw.x
input guide.

Remember, the parameters setted here are just for fun, remember to run appropriate convergence check
of the kmesh, smearing and basis set cutoffs before running the SSCHA code. Keep also in mind that
this input file refers to the supercell, and the kpts variable can be properly rescaled if the supercell is
increased.

All the rest of the code remains the same (but here we do not compute harmonic phonons, which can be
done more efficiently within the Quantum ESPRESSO). Instead, we take the result obtained with EMT
in the previous sections, and try to relax the free energy with a fully ab-initio approach.

The complete code is inside Examples/sscha_and_dft/nvt_local.py

Import the sscha code
import sscha, sscha.Ensemble, sscha.SchaMinimizer, sscha.Relax, sscha.
~Utilities

Import the cellconstructor library to manage phonons
import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.Structure, cellconstructor.calculators

Import the DFT calculator
import cellconstructor.calculators
from ase.calculators.espresso import Espresso

Import numerical and general pourpouse libraries
import numpy as np, matplotlib.pyplot as plt
import sys, os

Initialize the DFT (Quantum Espresso) calculator for gold
The input data is a dictionary that encodes the pw.x input file namelist
input_data = {

"control' : {
Avoid writing wavefunctions on the disk
'disk_io' : 'None',

Where to find the pseudopotential
'pseudo_dir' v

3,

'system' : {

(continues on next page)

2Zhapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

https://www.quantum-espresso.org/Doc/INPUT_PW.html
https://www.quantum-espresso.org/Doc/INPUT_PW.html

SSCHA SCHOOL 2023

(continued from previous page)

Specify the basis set cutoffs

'ecutwfc' : 45, # Cutoff for wavefunction
'ecutrho' : 45*4, # Cutoff for the density
Information about smearing (it is a metal)

'occupations' : 'smearing',
"smearing' : 'mv',
'degauss’' : 0.03

1,

'electrons' : {
'conv_thr' : le-8

3

the pseudopotential for each chemical element
In this case just Gold
pseudopotentials = {'Au' : "Au_ONCV_PBE-1.0.oncvpsp.upf'}

the kpoints mesh and the offset
kpts = (1,1,1)
koffset = (1,1,1)

Specify the command to call quantum espresso
command = 'pw.x -i PREFIX.pwi > PREFIX.pwo'

Prepare the quantum espresso calculator
#calculator = CC.calculators.Espresso(input_data,
pseudopotentials,
command = command,
kpts = kpts,
koffset = koffset)
calculator = Espresso(input_data = imput_data,
pseudopotentials = pseudopotentials,
command = command,
kpts = kpts,
koffset = koffset)

H WK W K

TEMPERATURE = 300
N_CONFIGS = 50
MAX_ITERATIONS = 20
START_DYN = 'harmonic_dyn'
NQIRR = 13

Let us load the starting dynamical matrix
gold_dyn = CC.Phonons.Phonons(START_DYN, NQIRR)

Initialize the random ionic ensemble

(continues on next page)

2.3. Ab initio calculation with the SSCHA code 23

SSCHA SCHOOL 2023

(continued from previous page)

ensemble = sscha.Ensemble.Ensemble(gold_dyn, TEMPERATURE)

Initialize the free energy minimizer
minim = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)
minim.set_minimization_step(0.01)

Initialize the NVT simulation
relax = sscha.Relax.SSCHA(minim, calculator, N_configs = N_CONFIGS,
max_pop = MAX_ITERATIONS)

Define the I/0 operations

To save info about the free energy minimization after each step
ioinfo = sscha.Utilities.IOInfo()

ioinfo.SetupSaving("minim_info")
relax.setup_custom_functions(custom_function_post = ioinfo.CFP_SaveAll)

Run the NVT simulation (save the stress to compute the pressure)
relax.relax(get_stress = True)

If instead you want to run a NPT simulation, use
The target pressure is given in GPa.
#relax.vc_relax(target_press = 0)

You can also run a mixed simulation (NVT) but with variable lattice.
< parameters
#relax.vc_relax(fix_volume = True)

Now we can save the final dynamical matrix

And print in stdout the info about the minimization
relax.minim. finalize()
relax.minim.dyn.save_ge("sscha_T{}_dyn".format (TEMPERATURE))

Now you can run the SSCHA with an ab-initio code! However, your calculation will probably take
forever. To speedup things, lets discuss parallelization and how to exploit modern HPC infrastructures.

2.3.1 Parallelization

If you actually tried to run the code of the previous section on a laptop, it will take forever. The reason
is that DFT calculations are much more expensive than the SSCHA minimization. While SSCHA mini-
mizes the number of ab initio calculations (especially when compared with MD or PIMD)), still they are
the bottleneck of the computational time.

For this reason, we need an opportune parallelization strategy to reduce the total time to run a SSCHA.

The simplest way is to call the previous python script with MPI:

$ mpirun -np 50 python nvt_local.py > output.log

The code will split the configurations in each ensemble on a different MPI process. In this case we have
50 configurations per ensemble, by splitting them into 50 processors, we run the full ensemble in parallel.

2C€hapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

SSCHA SCHOOL 2023

However, still the single DFT calculation on 1 processor is going to take hours, and in some cases it
may even take days. Luckily, also quantum ESPRESSO (and many other software) have an internal
parallelization to work with. For example, we can tell quantum espresso to run itself in parallel on 8
processors. To this purpouse, we simply need to modify the command used to run quantum espresso in
the previous script.

Lets replace

command = 'pw.x -i PREFIX.pwi > PREFIX.pwo'

with

command = 'mpirun -np 8 pw.x -npool 1 -i PREFIX.pwi > PREFIX.pwo'

The command string is passed to the espresso calculator
calculator = CC.calculators.Espresso(input_data,
pseudopotentials,
command = command,
kpts = kpts,
koffset = koffset)

In this way, our calculations will run on 400 processors (50 processors splits the ensemble times 8 pro-
cessors per each calculation). This is achieved by nesting mpi calls. However, only the cellconstructor
calculators can nest mpi calls without raising errors. This is the reason why we imported the Espresso
class from cellconstructor and not from ASE. If you want to use ASE for your calculator, you can only
use the inner parallelization of the calculator modifying the command, as ASE itself implements a MPI
parallelization on I/O operations that conflicts with the python-sscha parallelization. This limitation only
applies to FileIOCalculators from ASE (thus the EMT force-field is not affected and can be safely em-
ployed with python-sscha parallelization).

With this setup, the full code is parallelized over 400 processors. However the SSCHA minimization
algorithm is a serial one, and all the time spent in the actual SSCHA minimization is wasting the great
number of resources allocated. Moreover, the SSCHA code needs to be configured and correctly installed
on the cluster, which may be a difficult operation due to the hybrid Fortran/pyhton structure.

2.3. Ab initio calculation with the SSCHA code 25

SSCHA SCHOOL 2023

2€hapter 2. Hands-on-session 1 - First SSCHA simulations: free energy and structural
relaxations

CHAPTER
THREE

HANDS-ON-SESSION 2 - ADVANCED FREE ENERGY
MINIMIZATION

This tutorial will cover more advanced code features, like the SSCHA code’s interoperability with a
high-performance computer (HPC). The tutorial is divided into two sections. In the first section, we will
perform a free energy minimization manually; then we will learn how to automatize the interaction with
a cluster to run ab initio calculations automatically.

3.1 Manual submission

The SSCHA calculation comprises three main steps iterated until convergence:
1. The generation of a random ensemble of ionic configurations
2. Calculations of energies and forces on the ensemble
3. The SSCHA free energy minimization

In the first hands-on session, you configured the code to do these iterations automatically. Thanks to the
ASE EMT force field, the code can automatically compute energies, forces, and stress tensors without
user interaction.

However, if you need to compute energies and forces from an ab initio calculation like DFT, you may
want to run the DFT code on a different machine, like a cluster.

You can use the manual submission if you want more control over the procedure.

We will compute the sulfur hydride (superconductor with 7. = 203 K), using a DFT code like quantum
Espresso to calculate energy and forces.

The harmonic phonons (computed using quantum Espresso) is provided in the directory 02_man-
ual_submission, where you can find the input and output files of the quantum espresso calcula-
tion to calculate the harmonic phonons, and the dynamical matrices, named dyn_h3s_harmonic_l1,
dyn_h3s_harmonic_2 and dyn_h3s_harmonic_3.

They respect the naming convention so that each file contains a different q point: since we are using a
2x2x2 mesh to sample the Brillouin zone of phonons, the different q points are ordered in three separate
files, each one grouping the star of q (the q points related by symmetry operations).

We start by plotting the dispersion of the harmonic dynamical matrix. Please write in a file the following
script and run it.

import cellconstructor as CC, cellconstructor.Phonons
import cellconstructor.ForceTensor

(continues on next page)

27

SSCHA SCHOOL 2023

(continued from previous page)

import ase, ase.dft

import matplotlib.pyplot as plt
import numpy as np

dyn = CC.Phonons.Phonons("dyn_h3s_harmonic_", 3) # Load 3 files

PATH = "GHNPGN"
N_POINTS = 1000

Use ASE to get the q points from the path
band_path = ase.dft.kpoints.bandpath(PATH,
dyn.structure.unit_cell,
N_POINTS)

Get the g points in cartesian coordinates
g_path = band_path.cartesian_kpts()

Get the values of x axis and labels for plotting the band path
x_axis, xticks, xlabels = band_path.get_linear_kpoint_axis()

Perform the interpolation of the dynamical matrix along the q_path
frequencies = CC.ForceTensor.get_phonons_in_gpath(dyn, g_path)

Plot the dispersion

fig = plt.figureQ)

ax = plt.gca(Q)

ax.set_title("Harmonic H3S Phonon dispersion")

for i in range(frequencies.shape[-1]):
ax.plot(x_axis, frequencies[:, i], color = 'r'")

for x in xticks:
ax.axvline(x, 0, 1, color="k', 1lw=0.4) # Plot vertical lines for each high-
—Symmetry point

Set the labels of the axis as the Brilluin zone letters
ax.set_xticks(xticks)
ax.set_xticklabels(xlabels)

ax.set_ylabel ("Frequency [cm-1]")
ax.set_xlabel("g-path™)

plt.tight_layout()
plt.savefig("harmonic_h3s_dispersion.png")
plt.show()

You should see the figure Dispersion of the harmonic phonons of H3S.

28 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

Harmonic H3S Phonon dispersion

1500 4 X

1000 4

500 4

Frequency [cm-1]

=500

qg-path

Fig. 3.1.1: Dispersion of the harmonic phonons of H3S

The dispersion presents imaginary phonons throughout most of the Brillouin zone. To start the SSCHA,
we need a positive definite dynamical matrix. Since the starting point for the SSCHA does not matter,
we may flip the phonons to be positive:

Dy = Z Ve |w, | eZeZ
I

where m,, is the mass of the a-th atom, w, is the frequency of the dynamical matrix, and e, is the
corresponding eigenvector. This operation can be performed with the command

dyn.ForcePositiveDefinite()

and save the results into start_sschal, start_sscha2, and start_sscha3 with

dyn.save_ge("start_sscha')

Exercise

Plot the phonon dispersion of the positive definite dynamical matrix obtained in this way. Save the
resulting dynamical matrix as ‘start_sscha’ to continue with the following section.

3.1.1 Ensemble generation

Now that we have a good starting point for the dynamical matrix, we are ready to generate the first
ensemble to start the free energy optimization. Here is a script to generate the ensemble.

The following script supposes that you saved the dynamical matrix after enforcing them to be positive
definite as “start_sscha”. However, you can edit the script to read the harmonic dynamical matrices and
impose the positiveness within the same script.

import cellconstructor as CC, cellconstructor.Phonons
import sscha, sscha.Ensemble
import numpy as np

(continues on next page)

3.1. Manual submission 29

SSCHA SCHOOL 2023

(continued from previous page)

Fix the seed so that we all generate the same ensemble
np.random. seed (0)

Load the dynamical matrix
dyn = CC.Phonons.Phonons("start_sscha", nqirr=3)

#[apply here the needed changes to dyn]

Prepare the ensemble
temperature = 300 # 300 K
ensemble = sscha.Ensemble.Ensemble(dyn, temperature)

Generate the ensemble
number_of_configurations = 10
ensemble.generate(number_of_configurations)

Save the ensemble into a directory
save_directory = "data"

population_id = 1
ensemble.save(save_directory, population_id)

If you try to run the code, you can face an error telling you that the dynamical matrix does not satisfy the
acoustic sum rule (ASR). This occurs because quantum Espresso does not impose the ASR by default.
However, we can enforce the acoustic sum rule with the following:

dyn.Symmetrize()

Besides the ASR, this function will also impose all the symmetries on the dynamical matrix, ensuring it
is correct.

Exercise

Impose the acoustic sum rule and the symmetries and generate the ensemble. Either add this after
loading the dynamical matrix or do it once overriding the ‘start_sscha’ files.

3.1.2 Calculation of energies and forces
Very good; if you imposed the sum rule correctly, the ensemble should have been correctly generated.
The script should have created the data directory and two sets of dynamical matrices:

1. dyn_start_populationl_x

2. dyn_end_populationl_x

where x goes from 1 to 3. These are the same dynamical matrix as the original one. In particular,
dyn_start is the dynamical matrix used to generate the ensemble, and dyn_end is the final dynamical
matrix after the free energy optimization. Since we did not run the sscha, they are the same.

If we look inside the data directory, we find:

1. energies_supercell_populationl.dat

30 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

2. scf_population1_x.dat
3. u_populationl_x.dat

where x counts from 1 to the total number of configurations, the energies_supercell file contains any
structure’s total DFT energy (in Ry). Since we have not yet performed DFT calculations, it is full of Os.

u_populationl_x.dat files contain the cartesian displacements of each atom in the supercell with respect
to the average position. We will not touch this file, but the sscha uses it to load the ensemble much faster
when we have many configurations and big systems.

The last files are the scf_populationl_x.dat, containing the ionic positions, including the atomic type, in
Cartesian coordinates.

This file contains the structure in the supercell; it is already in the standard quantum espresso format,
so you can attach this text to the header file of the quantum espresso input to have a complete input file
for this structure. However, you can easily manipulate this file to adapt it to your favorite programs, like
VASP, ABINIT, SIESTA, CP2K, CASTEP, or any other.

You can visualize a structure using ASE and Cellconstructor:

import ase, ase.visualize
import cellconstructor as CC, cellconstructor.Structure

struct = CC.Structure.Structure()
struct.read_scf("data/scf_populationl_1.dat")
ase_struct = struct.get_ase_atoms()
ase.visualize.view(ase_struct)

Indeed, using the same trick, you can export the structure in any file format that ASE support, including
input files for different programs mentioned above.

Here, we will use quantum Espresso. The header file for the quantum espresso calculation is in
espresso_header.pwi. Remember that the configurations are in the supercell, so the number of atoms
(here 32 instead of 4) and any extensive parameter like the k-point mesh should be rescaled accordingly.
Here we employ an 8x8x8 k-mesh for the electronic calculation, while to compute the harmonic phonons
with a unit cell calculation, we use a 16x16x16 k-mesh since the sscha configurations are 2x2x2 bigger
than the original one, and thus the Brillouin zone is a factor 0.5x0.5x0.5 smaller.

You can append each scf file to this header to get the espresso input.

We have only ten configurations; in production runs, using at least hundreds of configurations per en-
semble is appropriate. Therefore, it is impractical to create the input file for each of them manually.

#!/bin/bash
HEADER_FILE=espresso_header.pwi
DATA_DIR=data

POPULATION=1

Define a directory in which to save all the input files
TARGET_DIRECTORY=$DATA_DIR/input_files_population$POPULATION

mkdir -p $TARGET_DIRECTORY

(continues on next page)

3.1. Manual submission 31

SSCHA SCHOOL 2023

(continued from previous page)

for file in "1s $DATA_DIR/scf_population${POPULATION}*.dat"
do
Extract the configuration index
(the grep command returns only the expression
that matches the regular expression from the file name)
index="echo $file | grep -oP '(7?<=populationl_).*(?=\.dat)"'"

target_input_file=$TARGET_DIRECTORY/structure_${index}.pwi

Copy the template header file
cp $HEADER_FILE $target_input_file

Attach after the header the structure
cat $file >> $target_input_file
done

Executing this script, you have created a directory inside the data dir called input_files_populationl which
contains all the input files for quantum Espresso.

You can run these with your own laptop if you have a good computer. However, the calculation is com-
putationally demanding: each configuration contains plenty of atoms and no symmetries at all, as they
are snapshots of the quantum/thermal motion of the nuclei. The alternative is to copy these files on a
cluster and submit a calculation there.

The espresso files are run with the command

mpirun -np NPROC pw.x -i input_file.pwi > output_file.pwo

where NPROC is the number of processors in which we want to run. Remember to copy the pseudopo-
tential in the same directory where you run the pw.x executable.

However, we skip this part now (try it yourself later!)
We provide the output files in the folder output_espresso

Once we have the output files from Espresso, we need to save the energies, forces, and stress tensors in
the ensemble directory.

#!/bin/bash

N_CONFIGS=10

POPULATION=1
PATH_TO_DIR="data/output_espresso"
N_ATOMS=32

ENERGY_FILE="data/energies_supercell_population${POPULATION}.dat"

Clear the energy file
rm -rf $ENERGY_FILE

for i in "seq 1 10°

(continues on next page)

32 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

(continued from previous page)

do
filename=${PATH_TO_DIR}/structure_$i.pwo
force_file=data/forces_population${POPULATION}_$i.dat
stress_file=data/pressures_population${POPULATION}_$i.dat

Get the total energy
grep ! $filename | awk '{print $5}' >> $ENERGY_FILE
grep force $filename | grep atom | awk '{print $7, $8, $9}' > S$force_file
grep "total stress" $filename -A3 | tail -n +2 | awk '{print $1, $2, $3}
—' > $stress_file
done

This script works specifically for quantum Espresso. It extracts energy, forces, and the stress ten-
sor and fills the files data/energies_supercell_populationl.dat, forces_populationl_X.dat, and pres-
sures_populationl_X.dat with the results obtained from the output file of quantum Espresso.

The units of measurement are
1. Ry for the energy (in the supercell)
2. Ry/Bohr for the forces
3. Ry/Bohr”3 for the stress tensor

Here, we do not need conversion, as these are the default units quantum Espresso gives. However, re-
member to convert correctly to these units if you use a different program, like VASP.

3.1.3 Free energy minimization

We have the ensemble ready to be loaded back into the Python script and start a minimization. This is
done with the following scripts

import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Utilities
import cellconstructor as CC, cellconstructor.Phonons

POPULATION = 1
dyn = CC.Phonons.Phonons("start_sscha", 3)
ensemble = sscha.Ensemble.Ensemble(dyn, 0)

ensemble.load("data", population = POPULATION, N = 10)

minim = sscha.SchaMinimizer.SSCHA_Minimizer (ensemble)
minim.initQ

Save the minimization details
ioinfo = sscha.Utilities.IOInfo()
ioinfo.SetupSaving("minim_{}". format (POPULATION))

minim.run(custom_function_post = ioinfo.CFP_SaveAll)

(continues on next page)

3.1. Manual submission 33

SSCHA SCHOOL 2023

(continued from previous page)

minim. finalize()

minim.dyn.save_ge("final_sscha_dyn_population " . format (POPULATION))

You can plot the results of the minimization with

sscha-plot-data.py minim_1

Congratulations! You run your first completely manual SSCHA run.

The output file informs us that minimization ended because the ensemble is out of the stochastic criteria.
This means that the dynamical matrix changed a sufficient amount that the original ensemble was not
good enough anymore to describe the free energy of the new dynamical matrix; therefore, a new ensemble
should be extracted.

In the early days of the SSCHA, this procedure should have been iterated repeatedly until convergence.
Nowadays, we have a fully automatic procedure that can automatize all these steps configuring the ssh
connection to a cluster.

3.2 Automatic submission with a cluster

In the previous section, you made all the steps to run a sscha calculation manually. This consists of
iterating through the following steps:

1. generating the input files for Espresso,
2. transferring them to a cluster,

3. submitting the calculations,

4. retrieving the outputs,

5. reload the ensemble

6. run the free energy minimization

In this section, we learn how to automatize these passages. We must set up the interaction between
the SSCHA library and the HPC cluster running the DFT calculations. As of June 2023, this automatic
interaction is only supported for quantum Espresso and SLURM-based clusters. However, writing plugins
to support different DFT codes and cluster schedulers should be easy.

The configuration of the DFT parameter has been introduced in the previous hands-on session; thus,
we skip and provide a file called espresso_calculator.py, which defines a function get_h3s_calculator
returning the calculator object for quantum Espresso with the input parameters for H3S.

We focus instead on the configuration of the cluster. Create a new file called cluster.py. The follow-
ing script provides an example to connect to a cluster with username sschauser and login node my.
beautiful.cluster.eu:

import cellconstructor as CC, cellconstructor.Phonons
import sscha
import sscha.Cluster

import sys, os

(continues on next page)

34 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

(continued from previous page)

def configure_cluster(cluster_workdir = "H3S"):
cluster = sscha.Cluster.Cluster(hostname = "sschauser@my.beautiful.
—cluster.eu")

cluster.use_memory = True
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.
cluster.

ram = 180000

use_partition = True

partition_name = "workstations"
account_name = "my_allocation_resources"
n_nodes = 1

use_cpu = False
custom_params["get-user-env'"] = None
custom_params["cpus-per-task"] = 2
custom_params["ntasks-per-node"] = 48
time = "12:00:00"

n_cpu = 48
n_pool = 48
job_number = 12

batch_size = 2

home_workdir=os.path. join("$HOME", cluster_workdir)
scratch_workdir = os.path.join("/scratch/$USER/", cluster_workdir)
cluster.workdir = home_workdir

cluster.add_set_minus_x = True # Avoid the set -x
cluster.load_modules = £"""

module
module
module
module
module

export

purge
load
load
load
load

OMP_N

intel

intel-mpi

intel-mkl
quantum-espresso/6.8.0-mpi

UM_THREADS=$SLURM_CPUS_PER_TASK

mkdir -p {scratch_workdir}
cp $HOME/espresso/pseudo/* {scratch_workdir}/

i

def cp_files(lbls):

extr
extr
for

ain = f"cd {scratch_workdir}\n"
aout = "sleep 1\n"
1bl in 1bls:

extrain += f"cp {home_workdir}/{1bl}.pwi {scratch_workdir}/\n"
extraout += f'"mv {scratch_workdir}/{1bl}.pwo {home_workdir}/\n"

return extrain, extraout

Add the possibility to copy the input files

(continues on next page)

3.2. Automatic submission with a cluster 35

SSCHA SCHOOL 2023

(continued from previous page)

cluster.additional_script_parameters = cp_files

Force to open a shell when executing ssh commands

(Otherwise the cluster will not load the module environment)
cluster.use_active_shell = True

cluster.setup_workdir()

Check the communication
if not cluster.CheckCommunication():

raise ValueError("Impossible to connect to the cluster.™)

return cluster

This file contains all the information to connect with the cluster that you can customize to adapt to your
HPC center.

Let us dive a bit into the options.

The first thing to know how to configure is the ssh host connection. For example, if I connect to a cluster
using the command

ssh sschauser@my.beautiful.cluster.eu

You have to specify the entire string sschauser@my.beautiful.cluster.eu inside the hostname key at the
first definition of the cluster. If you have an ssh config file enabled, you can substitute the hostname with
the name in the configuration file corresponding to a HostName inside .ssh/config located in your
home directory.

The best procedure is to enable a public-private key without encryption. You can activate the encryption
if you have a wallet system in your PC that keeps the password saved, but in this case, the user must log
in with the screen unlocked to work.

If the HPC does not allow you to configure a pair of ssh keys for the connection and requires the standard
username/password connection, you can add the pwd keyword in the definition of the cluster. This is
not encouraged, as you will store your password in clear text inside the script (so if you are in a shared
workstation, remember to limit the read access to your scripts to other users, and do not send the script
accidentally to other people with your password).

For example:

cluster = sscha.Cluster.Cluster(hostname="sschauser@my.beautiful.cluster.eu",.
—pwd="mybeautifulpassword")

The other options are all standard SLURM configurations, as the amount of ram, name of partition, and
account for the submission, number of nodes, total time, and custom parameters specific for each cluster
These parameters are transformed into the submission script for slurm as

#SLURM --time=12:00:00
#SLURM --get-user-env
#SLURM --cpus-per-task=2
#[...]

Most variables have the use_xxx attribute; if set to False, the corresponding option is not printed. In the

36 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

last version of SSCHA, if you manually edit a variable, it should automatically set the corresponding
use_xxx to true.

cluster.use_partition = True
cluster.partition_name = "workstations"
cluster.account_name = "my_allocation_resources"

Most clusters must run on specific partitions; in this case, activate the partition flag with the
use_partition variable and specify the appropriate partition_name. Also, most of the time, the
computational resources are related to specific accounts indicated with account_name.

Particular attention needs to be taken to the following parameters

cluster.n_nodes = 1
cluster.time = "12:00:00"
cluster.n_cpu = 48
cluster.n_pool = 48
cluster. job_number = 12
cluster.batch_size = 2

These parameters are specific for the kind of calculation.

—

. n_nodes specifies the number of nodes
. time specifies the total time

. n_cpu specify how many processors to call quantum Espresso with

F S N)

. n_pool is the number of pools for the quantum espresso parallelization; it should be the greatest
common divisor between the number of CPUs and K points.

5. batch_size how many pw.x calculations to group in the same job (executed one after the other
without queue time).

6. job_number how many jobs will be submitted simultaneously (executed in parallel, but with queue
time).

The total time requested must be roughly the time expected for a single calculation multiplied by the
batch_size. It is convenient to overshoot the requested time, as some configurations may take a bit more
time.

The workdir is the directory in which all the input files are copied inside the cluster. This cluster uses a
local scratch for the submission (the job must copy all the input on a local scratch of the node and then
copy back the results to the shared filesystem). If no local scratch is requried, then we can set the working
directory (usually a shared scratch) with the command

cluster.workdir = "/scratch/myuser/"

However, this submission script (as ekhi) must work on a shared workdir, which is inside the home
directory. Therefore, we must tell the cluster to copy the files from the workdir to the local scratch before
and after each calculation. This is done by setting a custom function, executed for each calculation

def cp_files(lbls):
extrain = f"cd {scratch_workdir/\n"
extraout = "sleep 1\n"
for 1bl in 1bls:

(continues on next page)

3.2. Automatic submission with a cluster 37

SSCHA SCHOOL 2023

(continued from previous page)

extrain += f"cp {home_workdir}/{1lbl}.pwi {scratch_workdir}/\n"
extraout += f'"mv {scratch_workdir}/{1bl}.pwo {home_workdir}/\n"

return extrain, extraout

Add the possibility to copy the input files
cluster.additional_script_parameters = cp_files

Each cluster must load modules to run a calculation. All the modules and other commands to run before
the calculations are stored in the text variable load_modules

cluster.load_modules = £"""

module purge

module load intel

module load intel-mpi

module load intel-mkl

module load quantum-espresso/6.8.0-mpi

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mkdir -p {scratch_workdir
cp $HOME/espresso/pseudo/* {scratch_workdir}/

nmn

The specific of the modules to load depends on the cluster, in this case, we also create the local scratch
directory and copy the pseudopotential.

To check the connection and set up the working directory (create it on the cluster if it does not exist) use
the

cluster.setup_workdir()

if not cluster.CheckCommunication():
raise ValueError("Cluster connection failed!™)

Exercise

Customize the cluster.py file to connect to the ekhi server, following the instructions provided in the
ekhi guide.

38 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

SSCHA SCHOOL 2023

3.2.1 How to submit a calculation with a cluster automatically

Now that we have seen how to configure the cluster, it is time to start an actual calculation. We can use
this option to directly evaluate the ensemble generated manually before in the following way:

import cellconstructor as CC, cellconstructor.Phonons
import sscha, sscha.Ensemble

Import the two python scripts for the cluster and espresso configurations
import espresso_calculator
import cluster

Generate an ensemble with 10 configurations
dyn = CC.Phonons.Phonons("start_sscha", 3)
ensemble = sscha.Ensemble.Ensemble(dyn, 300)
ensemble.generate(10)

Get the espresso and cluster configurations
espresso_config = espresso_calculator.get_calculator()
cluster_config = cluster.configure_cluster()

Compute the ensemble
ensemble.compute_ensemble(espresso_config, cluster=cluster_config)

Save the ensemble (using population 2 to avoid overwriting the other one)
ensemble.save("data", 2)

As seen here, once the cluster is configured (but this needs to be done only once), it is straightforward to
compute the ensemble’s energy, forces, and stresses.

While the calculation is running, the temporary files copied from/to the cluster are stored in a directory
that is local_workdir. This is, by default, called cluster_work. They are called ESP_x.pwi EXP_x.pwo,
the input and output files, and with ESP_x.sh you have the SLURM submission script.

Indeed, as you have seen in the previous hands-on session, it is possible to use the cluster keyword also
in the SSCHA object of the Relax module to automatize all the procedures.

The following script runs the complete automatic relaxation of the SSCHA.

import cellconstructor as CC, cellconstructor.Phonons
import sscha, sscha.Ensemble
import sscha.SchaMinimizer, sscha.Relax

Import the two python scripts for the cluster and espresso configurations
import espresso_calculator
import cluster

Generate an ensemble with 10 configurations
dyn = CC.Phonons.Phonons("start_sscha", 3)

ensemble = sscha.Ensemble.Ensemble(dyn, 300)

Get the espresso and cluster configurations

(continues on next page)

3.2. Automatic submission with a cluster 39

SSCHA SCHOOL 2023

(continued from previous page)

espresso_config = espresso_calculator.get_calculator()
cluster_config = cluster.configure_cluster()

Setup the minimizer
minimizer = sscha.SchaMinimizer.SSCHA_Minimizer (ensemble)

Setup the automatic relaxation
relax = sscha.Relax.SSCHA(minimizer, espresso_config,
N_configs=10,
max_pop=3,
save_ensemble=True,
cluster=cluster_config)

Setup the IO to save the minimization data and the frequencies
ioinfo = sscha.Utilities.IOInfo()
ioinfo.SetupSaving("minimization_data")

Activate the data saving in the minimization
relax.setup_custom_functions(custom_function_post=ioinfo.CFP_SaveAll)

Perform the NVT simulation
relax.relax(get_stress=True)

Save the data
relax.minim. finalize()
relax.minim.dyn.save_qge("'final_dyn")

As for this NVT, you can also use vc_relax for the NPT simulation or the NVT with variable cell shape.

40 Chapter 3. Hands-on-session 2 - Advanced free energy minimization

CHAPTER
FOUR

HANDS-ON-SESSION 3 - CALCULATIONS OF SECOND-ORDER
PHASE TRANSITIONS WITH THE SSCHA

In this hands-on, we learn how to calculate second-order phase transitions within the SSCHA.

4.1 Structural instability: calculation of the Hessian

According to Landau’s theory, a second-order phase transition occurs when the free energy curvature
around the high-symmetry structure on the direction of the order parameter becomes negative:

T<T. T=T¢ T>T.
104 1.0 104

081 0.8 0.8 |

e
o
.

0.6 4 0.6

14
kS
L

Free energy

0.4 0.4+

o
[N]
.

0.2 4 0.2 4

14
o
!

0.0 q 0.0 4

-1.0 —0.5 0.0 0.5 10 -1.0 —0.5 0.0 05 10 -1.0 —0.5 0.0 0.5 10
Q [order parameter] Q [order parameter] Q [order parameter]

Fig. 4.1.1: Landau’s theory of second-order phase transitions.

For structural displacive phase transitions, the order parameter is associated to phonon atomic displace-
ments:

O*F
OR,ORy
Thus, the Free energy Hessian is the central quantity to study second-order phase transitions. The SSCHA

provides an analytical equation for the free energy Hessian, derived by Raffaello Bianco in the work
Bianco et. al. Phys. Rev. B 96, 014111. The free energy curvature can be written as:

PPF
OR,0R,

(3) 4) (3)
Dy + Z Pacd [1 —A @];}ef Depp

cdef

Fortunately, this complex equation can be evaluated from the ensemble with a simple function call:

ensemble.get_free_energy_hessian()

Lets see a practical example, first we calculate the SSCHA dynamical matrix for the SnTe:

41

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.014111

SSCHA SCHOOL 2023

To speedup the calculations, we will use a force-field that can mimic the physics of ferroelectric transitions
in FCC lattices.

We begin importing some libraries:

#!/usr/bin/env python
-*- coding: utf-8 -*-

#
#
SSCHA_exercise_Calculus.py
#
#

Import the cellconstructor stuff
import cellconstructor as CC
import cellconstructor.Phonons
import cellconstructor.ForceTensor
import cellconstructor.Structure
import cellconstructor.Spectral

Import the modules of the force field
import fforces as ff
import fforces.Calculator

Import the modules to run the sscha
import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Relax, sscha.Utilities

import spglib
from ase.visualize import view

Import Matplotlib to plot
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm
import timeit

Next we set some variables for the calculation:

#Setting the variables:

#Setting the temperature in Kelvin:

Temperature = 0

#Setting the number of configurations:

configurations = 50

#Setting the names and location of the files:

Files_dyn_SnTe = "ffield_dynqg"

#Set the number of irreducible q (reated to the supercell size):
ngirr = 3

#Setting the frequencies output file:

File_frequencies = "frequencies.dat"

#Setting the dynamical matrix output filename:

File_final _dyn = "final_sscha_T{}_".format(int(Temperature))

Now we need to calculate the SSCHA dynamical matrix. For that we follow some steps:

1. First we prepare the Toy model force field that substitutes the usual ab-initio for this tutorial. This

4Zhapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

force field needs the harmonic dynamical matrix to be initialized, and the higher order parameters.
Finally, the dynamical matrix for the minimization is loaded and readied. Since we are studying
a system that has a spontaneous symmetry breaking at low temperature, the harmonic dynamical
matrices will have imaginary phonons. We must enforce phonons to be positive definite to start a
SSCHA minimization.

Load the dynamical matrix for the force field
ff_dyn = CC.Phonons.Phonons("ffield_dynqg", 3)

Setup the forcefield with the correct parameters
ff_calculator = ff.Calculator.ToyModelCalculator(f£f_dyn)
ff calculator.type_cal = "pbtex"

ff _calculator.p3 = 0.036475

ff calculator.p4 = -0.022

ff calculator.p4x = -0.014

Initialization of the SSCHA matrix

dyn_sscha = CC.Phonons.Phonons(Files_dyn_SnTe, ngirr)
Flip the imaginary frequencies into real ones
dyn_sscha.ForcePositiveDefinite()

Apply the ASR and the symmetry group
dyn_sscha.Symmetrize()

2. The next step is to create the ensembles for the specified temperature. As an extra, we also look
for the space group of the structure.

ensemble = sscha.Ensemble.Ensemble(dyn_sscha,
TO = Temperature, supercell = dyn_sscha.GetSupercell())
Detect space group
symm=spglib.get_spacegroup(dyn_sscha.structure.get_ase_atoms(),
0.005)
print('Initial SG = ', symm)

3. Next comes the minimization step. Here we can set the fourth root minimization, in which, instead
of optimizing the auxiliary dynamical matrices themselves, we will optimize their fourth root.

®— (\4@)4

This constrains the dynamical matrix to be positive definite during the minimization. Next the
automatic relaxation is set with the option here to use the Sobol sequence for the ensemble gener-
ation.

We also set a custom function to save the frequencies at each iteration, to see how they evolves.
This is very useful to understand if the algorithm is converged or not.

Then the dynamical matrix of the converged minimization is saved in a file, and finally we take a
look at the space group and the structure.

minim = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)

Now we setup the minimization parameters
Since we are quite far from the correct solution,

(continues on next page)

4.1. Structural instability: calculation of the Hessian 43

SSCHA SCHOOL 2023

(continued from previous page)

we will use a small optimization step
minim.set_minimization_step(0.25)

Reduce the threshold for the gradient convergence
minim.meaningful_factor = 0.01

If the minimization ends with few steps (less than 10),
decrease it, if it takes too much, increase it

We decrease the Kong-Liu effective sample size below
which the population is stopped
minim.kong_liu_ratio = 0.5 # Default 0.5
We relax the structure
relax = sscha.Relax.SSCHA(minim,
ase_calculator = ff_calculator,
N_configs = configurations,
max_pop = 50)

Setup the custom function to print the frequencies

at each step of the minimization

io_func = sscha.Utilities.IOInfo()
io_func.SetupSaving(File_frequencies)

The file that will contain the frequencies is frequencies.dat

Now tell relax to call the function to save the frequencies

after each iteration

CFP stands for Custom Function Post (Post = after the minimization step)
#relax.setup_custom_functions (custom_function_post = io_func.CFP_
—SaveFrequencies)

relax.setup_custom_functions(custom_function_post = io_func.CFP_SaveAll)

Finally we do all the free energy calculations.

relax.relax()

#relax.vc_relax(static_bulk_modulus=40, fix_volume = False)

Save the final dynamical matrix

relax.minim.dyn.save_qge(File_final_dyn)

Detect space group

symm=spglib.get_spacegroup(relax.minim.dyn.structure.get_ase_atoms(),
0.005)

print('New SG = ', symm)

view(relax.minim.dyn.structure.get_ase_atoms())

This code will calculate the SSCHA minimization with the ff_calculator. We cat use sscha-plot-data.py
to take a look at the minimization.

python sscha-plot-data.py frequencies.dat

4L hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

5 20.0
au
£ 800 -
=
= 195 =
g £ 600
Z 1904 ob 400 4
2 &)
%‘3 =
200 -
T 18.5
ot
—_— 0 <
R T T T T T T T
4500
ks o 0014
o 4000 g
— =
=9 =]
E o
= 3500 4 @ 0.00
2 £
E 3000 g
= -0.01 4
M 2500 A
T T T T T T T
25 50 75 0 25 50 75
Good minimization steps Good minimization steps
Frequcency evolution
120 4
100 4
80 4
= I
E e
=) e
=, 60 1
o
=
o
=
T
&40 1
20
04

Good minimization steps

Note: this force field model is not able to compute stress, as it is defined only at fixed volume, so we
cannot use it for a variable cell relaxation.

Now we can search for instabilities.

If we have a very small mode in the SSCHA frequencies, it means that associated to that mode we have
huge fluctuations. This can indicate an instability. However, to test this we need to compute the free
energy curvature along this mode. This can be obtained in one shot thanks to the theory developed in
Bianco et. al. Phys. Rev. B 96, 014111.

For that we create another program to do the job.

As before, we begin importing some libraries and setting variables:

#!/usr/bin/env python
-*- coding: utf-8 -*-

(continues on next page)

4.1. Structural instability: calculation of the Hessian 45

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.014111

SSCHA SCHOOL 2023

(continued from previous page)

#

SSCHA_exercise_Unstable.py

#

Import the cellconstructor stuff
import cellconstructor as CC
import cellconstructor.Phonons
import cellconstructor.ForceTensor
import cellconstructor.Structure
import cellconstructor.Spectral

Import the modules of the force field
import fforces as ff
import fforces.Calculator

Import the modules to run the sscha
import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Relax, sscha.Utilities

import spglib
from ase.visualize import view

Import Matplotlib to plot
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm
import timeit

#Setting the variables:

#Setting the temperature in Kelvin:

Temperature = 0

#Setting the number of configurations:

configurations = 50

#Setting the names and location of the files:

Files_dyn_SnTe = "ffield_dynqg"

#Set the number of irreducible q (reated to the supercell size):
ngirr = 3

#Setting the frequencies output file:

File_frequencies = "frequencies.dat"

#Setting the dynamical matrix output filename:
File_final_dyn = "final_sscha_T{}_".format(int(Temperature))

Now we look for that instability:

1. The ff_calculator toy potential is defined as we have seen in the previous program.

Load the dynamical matrix for the force field
ff dyn = CC.Phonons.Phonons("ffield dynqg", 3)

Setup the forcefield with the correct parameters
ff _calculator = ff.Calculator.ToyModelCalculator(£ff_dyn)

(continues on next page)

4&hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

(continued from previous page)

ff_calculator.type_cal = "pbtex"
ff calculator.p3 = 0.036475

ff _calculator.p4 = -0.022

ff calculator.p4x = -0.014

Initialization of the SSCHA matrix
dyn_sscha = CC.Phonons.Phonons(Files_dyn_SnTe, nqirr)
dyn_sscha.ForcePositiveDefinite()

Apply also the ASR and the symmetry group
dyn_sscha.Symmetrize()

2. Next, we will load the dynamical matrix calculated previously with the ff_calculator toy potential,
so there is no need to calculate it again.

The SSCHA dynamical matrix is needed (the one after convergence)
We reload the final result (no need to rerun the sscha minimization)
dyn_sscha_final = CC.Phonons.Phonons(File_final_dyn, nqgirr)

3. Then, as the Hessian calculation is more sensible, we generate a new ensemble with more config-
urations. To compute the hessian we will use an ensemble of 10000 configurations. Note here that
we can use less if we use Sobol sequence or we can load a previously generated ensemble.

We reset the ensemble
ensemble = sscha.Ensemble.Ensemble(dyn_sscha_final, T® = Temperature,
supercell = dyn_sscha_final.GetSupercell())

We need a bigger ensemble to properly compute the hessian

Here we will use 10000 configurations

ensemble.generate(5000, sobol = True)

#ensemble.generate (10000, sobol = False)

#We could also load the ensemble with

ensemble.load('"data_ensemble_final", N = 100, population = 5)

4. We now compute forces and energies using the force field calculator.

We now compute forces and energies using the force field calculator
ensemble.get_energy_forces(ff_calculator, compute_stress = False)

5. Finally the free energy hessian is calculated in the hessian function. We can choose if we neglect or
not in the calculation the four phonon scattering process. Four phonon scattering processes require
a huge memory allocation for big systems, that scales as (3N)*4 with N the number of atoms in
the supercell. Moreover, it may require also more configurations to converge.

In almost all the systems we studied up to now, we found this four phonon scattering at high order to
be negligible. We remark, that the SSCHA minimization already includes four phonon scattering
at the lowest order perturbation theory, thus neglecting this term only affects combinations of one
or more four phonon scattering with two three phonon scatterings (high order diagrams). For more
details, see Bianco et. al. Phys. Rev. B 96, 014111.

We can then print the frequencies of the hessian. If an imaginary frequency is present, then the
system wants to spontaneously break the high symmetry phase.

4.1. Structural instability: calculation of the Hessian 47

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.014111

SSCHA SCHOOL 2023

print("Updating the importance sampling...")

If the sscha matrix was not the one used to compute the ensemble
We must update the ensemble weights

We can also use this function to simulate a different temperature.
ensemble.update_weights(dyn_sscha_final, Temperature)

o—mmm COMPUTE THE FREE ENERGY HESSIAN --------—---
print("Computing the free energy hessian...")

dyn_hessian = ensemble.get_free_energy_hessian(include_v4 = False)
We neglect high-order four phonon scattering

#dyn_hessian = ensemble.get_free_energy_hessian(include_v4 = True,

get_full_hessian = True,verbose = True) # Full calculus
We can save the free energy hessian as a dynamical matrix

in quantum espresso format

dyn_hessian.save_ge("hessian")

We calculate the frequencies of the hessian:
w_hessian, pols_hessian = dyn_hessian.DiagonalizeSupercell()

Print all the frequency converting them into cm-1 (They are in Ry)
print("\n".join([" cm-1". format(w * CC.Units.RY_TO_CM) for w in w_
—hessian]))

The frequencies in the free energy hessian are temperature dependent.

We can look at the eigenmodes of the free energy hessian to check if we have imaginary phonons. If
there are negative frequencies then we found an instability. You can check what happens if you include
the fourth order.

Exercise

The Sobol sequences reduces the number of configurations by doing a better mapping of the gaussian
than a random distribution. By uniformity spreading the samplings with a low discrepancy sequence
like Sobol it is possible to reduce the number of configurations needed. Low discrepancy sequences
tend to sample space “more uniformly” than random numbers. Algorithms that use such sequences
may have superior convergence. You can test this in the calculation of the hessian by changing the
number of configurations and the mapping scheme in the ensemble.generate() function.

4.2 Second order phase transition

Up to now we studied the system at T=0K and we found that there is an instability. However, we can repeat
the minimization at many temperatures, and track the phonon frequency to see which is the temperature
at which the system becomes stable.

Again we load and set the variables. Now the we have several temperatures so we store them in an array:

#!/usr/bin/env python

-*- coding: utf-8 -*-

#

SSCHA_exercise_Unstable.py

(continues on next page)

4&hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

(continued from previous page)

#

Import the cellconstructor stuff
import cellconstructor as CC
import cellconstructor.Phonons
import cellconstructor.ForceTensor
import cellconstructor.Structure
import cellconstructor.Spectral

Import the modules of the force field
import fforces as ff
import fforces.Calculator

Import the modules to run the sscha
import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Relax, sscha.Utilities

import spglib
from ase.visualize import view

Import Matplotlib to plot
import numpy as np

import matplotlib.pyplot as plt
from matplotlib import cm
import timeit

#Setting the variables:

#Setting the temperature in Kelvin:

Temperature = 0

#Setting the number of configurations:

configurations = 50

#Setting the names and location of the files:

Files_dyn_SnTe = "ffield_dynqg"

#Set the number of irreducible q (reated to the supercell size):
ngirr = 3

#Setting the frequencies output file:

File_frequencies = "frequencies.dat"

#Setting the dynamical matrix output filename:
File_final_dyn = "final_sscha_T{}_".format(int(Temperature))
sobol = False

sobol_scatter = False

1. Like in the previous program, first we prepare the Toy model force field

Load the dynamical matrix for the force field
ff _dyn = CC.Phonons.Phonons("ffield_dynqg", 3)

Setup the forcefield with the correct parameters
ff_calculator = ff.Calculator.ToyModelCalculator(£ff_dyn)
ff calculator.type_cal = "pbtex"

(continues on next page)

4.2. Second order phase transition 49

SSCHA SCHOOL 2023

(continued from previous page)

ff_calculator.p3 = 0.036475
ff calculator.p4 -0.022
ff _calculator.p4x = -0.014

2. We are going to need a range of temperatures for this calculation:

Define the temperatures, from 50 to 300 K, 6 temperatures
temperatures = np.linspace(50, 300, 6)

lowest_hessian_mode = []

lowest_sscha_mode = []

Perform a simulation at each temperature
t_old = Temperature

3. In the next part we condense the calculation of the hessians in a loop for different temperatures. In
the end, it searches for the lowest non acoustic frequency to save with the correspondent auxiliar
sscha frequency.

for Temperature in temperatures:
Load the starting dynamical matrix
dyn = CC.Phonons.Phonons(File_final_dyn.format(int(t_old)), ngirr)

Prepare the ensemble
ensemble = sscha.Ensemble.Ensemble(dyn, T® = Temperature,
supercell = dyn.GetSupercell())

Prepare the minimizer

minim = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)
minim.min_step_struc = 0.05

minim.min_step_dyn = 0.002

minim.kong_liu_ratio = 0.5

minim.meaningful_factor = 0.000001
#minim.root_representation = "root4"
#minim.precond_dyn = False

#minim.minim_struct = True

#minim.neglect_symmetries = True
minim.enforce_sum_rule = True # Lorenzo's solution to the error

Prepare the relaxer (through many population)
relax = sscha.Relax.SSCHA(minim, ase_calculator = ff calculator,
N_configs=configurations, max_pop=20)

Relax
relax.relax(sobol = sobol, sobol_scramble = sobol_scatter)
#relax.relax()

Save the dynamical matrix
relax.minim.dyn.save_ge(File_final_dyn. format(int(Temperature)))

(continues on next page)

5@hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

(continued from previous page)

Detect space group

symm=spglib.get_spacegroup(relax.minim.dyn.structure.get_ase_atoms(),
0.005)

, symm,"' at T=',int(Temperature))

print('Current SG =

Recompute the ensemble for the hessian calculation
ensemble = sscha.Ensemble.Ensemble(relax.minim.dyn, T® = Temperature,
supercell = dyn.GetSupercell())
ensemble.generate(configurations, sobol = sobol,
sobol_scramble = sobol_scatter)
ensemble.get_energy_forces(ff_calculator, compute_stress = False)
#gets the energies and forces from ff_calculator

#update weights!!!

ensemble.update_weights(relax.minim.dyn, Temperature)

Get the free energy hessian

dyn_hessian = ensemble.get_free_energy_hessian(include_v4 = False)
#free energy hessian as in Bianco paper 2017
dyn_hessian.save_ge("hessian_T{}_".format(int(Temperature)))

Get the lowest frequencies for the sscha and the free energy hessian

w_sscha, pols_sscha = relax.minim.dyn.DiagonalizeSupercell() #dynamical.
—matrix

Get the structure in the supercell

superstructure = relax.minim.dyn.structure.generate_supercell(relax.minim.
—dyn.GetSupercell())

Discard the acoustic modes

acoustic_modes = CC.Methods.get_translations(pols_sscha,
superstructure.get_masses_array())

w_sscha = w_sscha[~acoustic_modes]

lowest_sscha_mode.append(np.min(w_sscha) * CC.Units.RY_TO_CM) # Convert.
—from Ry to cm-1

w_hessian, pols_hessian = dyn_hessian.DiagonalizeSupercell() #recomputed.
—dyn for hessian

Discard the acoustic modes

acoustic_modes = CC.Methods.get_translations(pols_hessian,

superstructure.get_masses_array())

w_hessian = w_hessian[~acoustic_modes]

lowest_hessian_mode.append(np.min(w_hessian) * CC.Units.RY_TO_CM) #.
—Convert from Ry to cm-1

#print ("\n".join(["{:.4f} cm-1".format(w * CC.Units.RY_TO_CM) for w in.
—pols_hessian]))

#exit()

t_old = Temperature
We prepare now the file to save the results

(continues on next page)

4.2. Second order phase transition 51

SSCHA SCHOOL 2023

(continued from previous page)

freq_data = np.zeros((len(temperatures), 3))
freq_datal[:, 0] = temperatures

freqg_datal:, 1] lowest_sscha_mode
freq_datal:, 2] lowest_hessian_mode

Save results on file
np.savetxt("{}_hessian_vs_temperature.dat".format(configurations),

freq_data, header = "T [K]; SSCHA mode [cm-1]; Free energy.
—hessian [cm-1]1")

4. Finally we make a graphic output of the data.

hessian_data = np.loadtxt("{}_hessian_vs_temperature.dat".
—format (configurations))

plt.figure(dpi = 120)
plt.plot(hessian_data[:,0], hessian_data[:,1],

label = "Min SCHA freq", marker = ">")
plt.plot(hessian_data[:,0], hessian_datal[:,2],

label = "Free energy curvature", marker = "o")
plt.axhline(®, 0, 1, color = "k", 1ls = "dotted") # Draw the zero
plt.xlabel ("Temperature [K]")
plt.ylabel ("Frequency [cm-1]")
plt.legend()
plt.tight_layout()
plt.savefig('{}_Temp_Freq.png'.format(configurations))
#plt.show()

plt.figure(dpi = 120)

plt.plot(hessian_data[:,0], np.signChessian_data[:,2]) * hessian_data[:,2]%*2,
label = "Free energy curvature", marker = "o0o")

plt.axhline(®, 0, 1, color = "k", 1ls = "dotted") # Draw the zero

plt.xlabel ("Temperature [K]")

plt.ylabel("$\omegar2$ [cm-2]1")

plt.legend()

plt.tight_layout()

plt.savefig('{}_Temp_Omeg.png'.format(configurations))

#plt.show()

We will simulate the temperatures up to room temperature (300 K) with steps of 50 K. Note, this will
perform all the steps above 6 times, so it may take some minutes, depending on the PC (on a i3 from
2015, with one core, it took 2 hours). If it takes too long you can reduce the number of steps by changing
the temperature array in Temperature_i = np.linspace(50, 300, 6).

5Zhapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

40 -

30 4

20 A

10 A

Frequency [cm-1]

—101 —»— Min SCHA freq

Free energy curvature

T T T T T
50 100 150 200 250 300
Temperature [K]

Fig. 4.2.1: Frequencies versus Temperatures

In Frequencies versus Temperatures we can see that the phase transition is between 100K and 150K. We
see that the data points do not drawn a linear figure. We can increase the number of Temperature points
to locate the exact transition temperature, but there is another better way to find it.

600 A

—8— Free energy curvature

500 A

400 -

300 A

200 A

w? [em-2]

100 4

—100 4

—200 A

50 100 150 200 250 300
Temperature [K]

Fig. 4.2.2: squared Frequencies versus Temperatures.

For the Landau theory of phase transition, since the SSCHA is a mean-field approach, we expect that
around the transition the critical exponent of the temperature goes as

w~ Vo

For this reason is better to plot the temperature versus the square of the frequency as in squared Frequen-
cies versus Temperatures. This makes the graph lineal and so we can easily estimate the critic temperature
by linear interpolation.

4.2. Second order phase transition 53

SSCHA SCHOOL 2023

We are using only 50 configurations in the ensemble. Note that this makes a fast calculation but is a
low number for this calculations because the free energy calculations are more noisy than the SSCHA
frequencies. This is due to the fact that the computation of the free energy requires the third order force
constant tensor, and that requires more configurations to converge.

Exercise

How the calculation of the free energy changes with the number of configurations?

35 4

30 4

25 A

20 A

15 A

Frequency [cm-1]

104

0 2000 4000 6000 8000 10000 12000 14000 16000
Num. Configurations

Fig. 4.2.3: Evolution of the lowest soft frequency in relation to the number of configurations in the
ensemble with a stable configuration. The line is the media and the shade is the standard deviation.

Exercise

Plot the Hessian phonon dispersion

5&«hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

SSCHA SCHOOL 2023

T T
100 —— SSCHA T=300K)
—— SSCHA T=100K
—— SSCHA T=50K
80 1
— 60 .
<
£
S
w
S 40
=
=]
=
=8
20 1
O .

4.2. Second order phase transition 55

SSCHA SCHOOL 2023

e — —_
| . |

: Calculator | Relax -

| 7 |

i Dyn_Harmonic »| Ensemble » Minimize |
. 4
e — e —

| |

. Calculator —_ = = = — — |

* | pyn_sscHa < | |

| get_energy forces()) :

' 4 S0 N

N [y }

! T(get free_energy_hessian()) | |

| ~———

i Dyn_hessian |#—--—-- — |

| v |

i (DiagonalizeSupercell |

L e T I
-— === === === —

Calculator

A

Dyn_start Minimize |- |
N A

S I
Ensemble ||_H generate) |

Dyn_Temperature

¥

Ensemble_hessian

Fig. 4.2.4: Workflow of the SSCHA objects for: A) Free energy minimization; B) Structural instabilities
search; C) Temperature loop for second order phase transition code. Dotted lines are functions within
objects. The dotted and dashed lines indicate the relationship of the dynamic matrix to the objects.

5&hapter 4. Hands-on-session 3 - Calculations of second-order phase transitions with
the SSCHA

CHAPTER
FIVE

HANDS-ON-SESSION 4 - CALCULATION OF SPECTRAL
PROPERTIES WITH THE SELF CONSISTENT HARMONIC
APPROXIMATION

5.1 Theoretical introduction

The SCHA phonons are non-interacting quasiparticles that already include anharmonic effects (i.e. in-
teraction between standard harmonic phonons) at some level. However, anharmoncity causes interaction
between the SCHA phonons too. The interactions between phonons causes a change of their energy spec-
trum: from the overlap of simple Dirac-delta functions centered around the SSCHA phonon frequencies,
to the overlap of Lorentzians with finite width (i.e. the quasiparticles have finite lifetime) and centered
around shifted energies, or structures even more complex (when the anharmoncity is so strong that the
quasiparticle picture has to be abandoned). For each g of the Brillouin zone, the SCHA phonons energy
spectrum o (g, 2) is given by Eq.(70)

o(q, Q) = —2 Im Tr [G(q, Q2 4 i07)] (70)

where G is the SCHA phonons Green function, given by G = GV + GOII G, with G the Green
function of the noninteracting SCHA phonons, and I their selfenergy taking into account the interaction
(in order to make easier the comparison with the literature, here and in the subsequent equations, the
equation numbers refer to the paper here https://arxiv.org/abs/2103.03973). The SSCHA code allows to
compute these quantities, even if in the current implementation the selfenergy can be computed only in
the bubble approximation (Eq. (75))

(B) i) 1
H“y(q, Q+ ?’55") :E Z Z 5G=Q+k1+kg
“kiks G
P12

X Q(Q + ?S(SH(,? Woy (kl),wp2(k2))
(3) (3)
X Dﬂaﬂl.ﬂz(_qa —ky, _kQ) DppoV(klg ko. (I) ,
(75)

i.e. the self-energy terms including the 4th order FCs are discarded. In this equation J, is an infinitely
small positive number (a smearing parameter), that in actual calculations has to be chosen, toegher with
the integration k-grid, in order to find converged results.

57

https://arxiv.org/abs/2103.03973

SSCHA SCHOOL 2023

The code, in addition to providing the ability to compute the spectral function through the full formula
Eq. (70), allows for various approximations to be used in order to both compute the spectral function
with reduced computational cost and conduct an analysis of the different contributions to the spectral
function provided by each mode. The main approximation is to negeclet the off-diagonal terms in the
self-energy written in the SCHA-modes basis set. In other words, we can negelct the possibility that the
interaction mixes different SCHA phonons. In that case, the total spectrum is given by the the sum of the
spectrum of each mode, 0,,(q, §2), as shown in Eq.(78),

olg. M) =>_ 0uq.Q), (78)

H
with o, (g,) having a generalized Lorentzian-like expression shown in Eq.(79)

o Q)—l l —Im Z,(q,)
W) = 5 I — Re Z,(q. O + [Im 2 .(q.)]
mY| g

N 1 Im Z,(q, (2)
7 [Q+ Re Z.(q, DI + [Im Z,(q. DT

(79)

with Z,,(q, §2) defined in Eq.(80)

2,00 = /2@ + 1L, O+ 6. (80)

where w,,(q) is the frequency (energy) of the SCHA phonon (q, 1), and IT,,,, (g, ©2) is the corresponding
diagonal element of the self-energy. This is the spectrum in the so called no mode-mixing approximation.
At this level, the single-mode spectral functions resemble Lorentzian functions, but they are not true
Lorentzians as they have kind of frequency-dependent center and width. As a matter of fact, in general, the
spectrum of a mode can be very different from a true Lorentzian function, meaning that the quasiparticle
picture for that mode is not appropriate. However, there are cases where the interaction between the
SCHA phonons does not affect the quasiparticle picture but causes only a shift in the quasiparticle energy
and the appearance of a finite linediwth (i.e. finite lifetime) with respect to the non-interacting case. In
that case, we can write the spectral function of the mode as a true Lorentzian, Eq.(81),

O';J,(q’ 0 = 2 |7 [Q— Qu(q)]z + [Fy(q)]z
1 Lu(q)

— , 81
troroer+mer] ©Y

i.e., the SCHA phonon (g,) is a quasiparticle with definite energy ©,(q) (Au(q) = Qu(q) — wu(q)
is called the energy shift) and lifetime 7,,(q) = 1/2I',(q), where I';,(q) is the Lorentzian half width at
half maximum (HWHM). The quantities §2,,(q) and I,,(q) satisfy the relations given in Eqgs.(82),(83)

58 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

Qp(lI) = Re Z,u(q: Q,u(q)) (82)

F,u(q) = —Im Z,u.(q’ Q,u(q)) (83)

Notice that the first one is a self-consistent equation. Instead of solving the self-consistent equation to
evaluate €2,(q) two approximated approaches can be adpoted, both implemented in the SSCHA. One,
that we call “one-shot”, evaluates the r.h.s of Eq.(82) at the SCHA frequency (Eqs.(84))

(os)
Q /L((I) =Re Z,u(qa w;u(q)) (84)

(os

)
r ,u(q) = —Im Zp(q: w,u(q))- (85)

This approximation is reasonable as long as the energy shift A,(q) = Q,(q) — w,(q) is small. In
particular, this is true if the SCHA self-energy is a (small) perturbation of the SCHA free propagator (not
meaning that we are in a perturbative regime with respect to the harmonic approximation). In thas case,
perturbation theory can be employed to evaluate the spectral function. If in Eq.(80) we keep only the
first-order term in the self-energy, we get Eqs.(86),(87):

(pert)
g = 20.(Q) Rell,,.(q,w.(q)) (86)
Wy
(pert) l o
r ;r(Q) — _m Im]-_-[,er,u(q-: W;J(Q) + 10ge). (8?)

This concludes the overview on the quantities that we are going to compute for PbTe.

5.2 Calculations on PbTe

We will perform calculations on PbTe in the rock-salt structure and, in order to speed-up the calculation,
we will employ the force-field model already used in previous tutorials (the force-field model can be
downloaded and installed from here https://github.com/SSCHAcode/F3ToyModel). The calculations
that we are going to perform are heavily underconverged and have to be consiered just as a guide to use
of the SSCHA code. We will use a 2x2x2 supercell for PbTe. In order to define the force-field model on
this superell we need three FCs, PbTe.ff.2x2x2.dynl, PbTe.[f.2x2x2.dyn2, and PbTe.ff.2x2x2.dyn3

First, we need to do the SSCHA minimization. Create a directory minim, and go into it. We take the
force-field FCs as starting point of the SSCHA mnimization too, with this input file min.py

import cellconstructor as CC

import cellconstructor.Phonons

import fforces as ff

import fforces.Calculator

import sscha, sscha.Ensemble, sscha.SchaMinimizer
import sscha.Relax, sscha.Utilities

(continues on next page)

5.2. Calculations on PbTe 59

https://github.com/SSCHAcode/F3ToyModel

SSCHA SCHOOL 2023

(continued from previous page)

TOY MODEL DEFINITION
Dynamical matrices that set up the harmonic part of the force-field

ff dyn_name="../04_spectral_calculations/toy_matrices_2x2x2/PbTe.ff.2x2x2.dyn"
Paramters that set up the anharmonic part of the force-field

p3 = -0.01408

p4 = -0.01090

p4x = 0.00254

#

#
dynamical matrices to be used as starting guess
dyn_sscha_name="../04_spectral_calculations/toy_matrices_2x2x2/PbTe.ff.2x2x2.
—dyn"

temperature

T=300

minimization parameters

N_CONFIGS = 50

MAX_ITERATIONS = 10

#
Setup the harmonic part of the force-field

ff_dynmat = CC.Phonons.Phonons(ff_dyn_name, 3)

ff_calculator = ff.Calculator.ToyModelCalculator(ff_dynmat)

Setup the anharmonic part of the force-field
ff_calculator.type_cal = "pbtex"

ff calculator.p3 = p3

ff_calculator.p4 = p4

ff calculator.pd4x = p4x

Load matrices

dyn_sscha=CC.Phonons.Phonons(dyn_sscha_name, 3)
dyn_sscha.Symmetrize()

Generate the ensemble

supercell=dyn_sscha.GetSupercell ()

ens = sscha.Ensemble.Ensemble(dyn_sscha, T, supercell)
ens.generate (N_CONFIGS)

Compute energy and forces for the ensemble elements
ens.get_energy_forces(ff_calculator , compute_stress = False)

Set up minimizer

minimizer = sscha.SchaMinimizer.SSCHA_Minimizer(ens)

Ignore the structure minimization (is fixed by symmetry)
minimizer.minim_struct = False

max number steps (negative infinite)

minimizer.max_ka=-1

Setup the minimization parameter for the covariance matrix
minimizer.set_minimization_step(1.0)

Setup the threshold for the ensemble wasting
minimizer.kong_liu_ratio =0.8 # Usually 0.5 is a good value
minimizer.meaningful_factor=1e-5 # meaningul factor

Initialize the simulation

(continues on next page)

60 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

(continued from previous page)

relax = sscha.Relax.SSCHA(minimizer,

ff calculator,

N_configs = N_CONFIGS,

max_pop = MAX_ITERATIONS)
Define the I/0 operations
To save info about the free energy minimization after each step
ioinfo = sscha.Utilities.IOInfo()
ioinfo.SetupSaving("minim_info")
relax.setup_custom_functions(custom_function_post = ioinfo.CFP_SaveAll)
Start the minimization
relax.relax()
Print in stdout the info about the minimization
and save the final dynamical matrix
relax.minim. finalize()
relax.minim.ensemble.save_bin("./data_pop", population_id=1)
relax.minim.dyn.save_qe("'SSCHA.T{}.dyn".format(T))

launching

$ python min.py > min.out

after a few second the minimization has concluded. The three SSCHA FCs matrices have been saved as
SSCHA.T300.dyn#q. Now we need to compute the third order FCs (FC3s) (and the Hessian FCs). At the
end of the SSCHA minimization, we saved the last population and the dynamical matrices that generated
it too. Using them, we compute the Hessian matrices and the FC3s. Exit from minim, create a directory
hessian, go into it, and use this input file hessian.py

import cellconstructor as CC
import sscha.Ensemble

#

NQIRR = 3
Tg = 300
T = 300
#

pop_dyn = CC.Phonons.Phonons('../minim/data_pop/dyn_gen_popl_"', 3)

sscha_dyn = CC.Phonons.Phonons('../minim/SSCHA/SSCHA.T300.dyn"', 3)

#

ens = sscha.Ensemble.Ensemble(pop_dyn, Tg)

ens.load_bin('../minim/data_pop', population_id = 1)

ens.update_weights(sscha_dyn, T)

#

hessian_dyn, d3 = ens.get_free_energy_hessian(include_v4 = False,
return_d3 = True)

hessian_dyn.save_ge('Hessian.dyn')

#AR R R FAAARAA AR AR AR AR AR R R##R FC3 part #######AAAARAR R AR AR A AR R AR AR
B

tensor3 = CC.ForceTensor.Tensor3(dyn=sscha_dyn) # initialize 3rd.

—order tensor (continues on next page)

5.2. Calculations on PbTe 61

SSCHA SCHOOL 2023

(continued from previous page)

tensor3.SetupFromTensor (d3) # assign values
tensor3.Center() # center it
tensor3.Apply_ASR(Q) # apply ASR

#

tensor3.WriteOnFile(fname="FC3",file_format='D3Q") write on file

giving

$ python hessian.py > hessian.out

We already did an Hessian calculation in a previous tutorial. The new part is the creation of the
3rd order FCs (FC3s), which we wrote in the file FC3. Some comments about the input file. In
get_free_energy_hessian we set return_d3 = True because we need these informations to set
up the FC3s. Moreover, since we are not going to use forth order FCs (we will work within the “bubble
approximation”), we set include_v4 = False, which in general saves a lot of computation time. Be-
fore writing the FC3s on file, we center it (a step necessary to perform Fourier interpolation), and apply
the acoustic sum rule (ASR), since the centering spoils it.s

The format chosen here to write the FC3 file is the same used in the d3q.x code https://anharmonic.github.
io/d3q/. To be precise: exploiting the lattice translation symmetry, the third order FCs can be written as
Daranas2(0, R, S), where oy, ag, g are cartesian indices, ag, ag, a3 atomic indices in the unit cell, and
R, S lattice vectors. The FC3 file in D3Q format is

alpha_1 alpha_2 alpha_3 at_1 at_2 at_3
N_RS
R_.x R.y R_z S_x S_y S_z phi(alpha_1,at_1,alpha_2,at_2,alpha_3,at_3)

alpha_1 alpha_2 alpha_3 at_1 at_2 at_3
N_RS
R_.x Ry R_.z S_x S_y S_z phi(alpha_1,at_1,alpha_2,at_2,alpha_3,at_3)

For each alpha_1 alpha_2 alpha_3 at_1 at_2 at_3 we have a block where: the first line is N_RS,
which is the number of R, .S considered. Each subsequent line refers to a couple R, S, with R_x R_y
R_z and S_x S_y S_z the crystal coordinates of R and S, respectively, and phi(alpha_1,at_1,
alpha_2,at_2,alpha_3,at_3) the corresponding FCs value ®5192%3(0, R, S).

aiazas

Equipped with the third order SSCHA FCs ,written in real space in the FC3 file, and the second-order
SSCHA FCs, written in reciprocal space in the SSCHA.T300.dyn#q files, we have all the ingredient to
compute the spectral functions. As first calculation, we compute the spectral function using Eq.(70) but
within the “static approximation”, this meaning that we keep the selfenergy blocked with 2 = 0, as
shown in Eq.(66) (within the bubble approximation)

(B)

1
H#V(Q;O) = m Z Z 6G,q+k1+k2’9¢(0:wﬂl(kl)vw@ (kQ))
G

kika
P1p2
(2))
X D#-P1.02(_Qa _kl: _kZ) Dp1p2;/(k1, k2, q) .

(66)

62 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

https://anharmonic.github.io/d3q/
https://anharmonic.github.io/d3q/

SSCHA SCHOOL 2023

In order to do that, exit from the current directory hessian, create a directory spectral_static, enter into
it, and use this input file spectral_static.py to compute the spectral function in the static approximation,
for the special point X

import cellconstructor as CC
import cellconstructor.ForceTensor

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn", 3)
FC3 = CC.ForceTensor.Tensor3(dyn=dyn)
FC3.SetupFromFile(fname=". . /hessian/FC3",file_format='D3Q"')

integration grid
k_grid=[2,2,2]

X in 2pi/Angstrom
points=[0.0,-0.1547054, 0.0]

CC.Spectral.get_full_dynamic_correction_along_path(dyn=dyn,

tensor3=FC3,

k_grid=k_grid,

el=100, de=0.1, e0=0, #.
—energy grid

T=300,

g_path=points,

static_limit = True,

filename_sp="full_spectral_
—func_X")

We used as integration k-grid (i.e. the k-grid of the summation in Eqs.(66), (75)) the grid commensurate
with the supercell, i.e. a 2x2x2 grid. In that case, using the centering is irrelevant, as there is no Fourier
interpolation. With

$ mpirun -np 4 python spectral_static.py > spectral_static.out

we run the code with MPI with 4 parallel processes. In output we have the file
Jfull_spectral_func_X_static.dat that contains the spectral function

0.000000 0.0000000 0.0000000
0.000000 0.1000000 0.0000000
0.000000 0.2000000 0.0000000
0.000000 0.3000000 0.0000001
0.000000 0.4000000 0.0000002
0.000000 0.5000000 0.0000003

where the first line indicates the lenght of the path. This would be relevant in case we had not just a
single g point, but a path of g-points. In that case, we would have several blocks, one for each g point,

5.2. Calculations on PbTe 63

SSCHA SCHOOL 2023

and the first column of each block would indicate the lenght of the g-path. In this case, since we have
just one point, we have just one block with the first column equal to zero. Plotting the 3rd vs 2nd column
we obtain this result:

2 T T I T T
L5 —1
T
E 1k -
~
=
S
0.5+ —
0 L | 1 | 1 |
20 40 60 80 100
Q(cm™1)

We have Dirac deltas (to be precise, extremely narrow Lorentzians whose width is given only by the
choice of the finite size of the used energy grid) around values that coincides with the Hessian frequency
values (plotted here with vertical lines), that you can find in the Hessian.dyn3 file obtained in the
previous run. Indeed, the Hessian calculation corresponds exactly to a calculation done with the static
self-energy. Two observations. The height of the spikes is proportional to the degeneracy of the modes.
The yellow line indicates the integral function fOQ o (', q) d€, which at the end returns the value: [num-
ber of modes]/2 (therefore 3 in this case). This is a general sum rule fulfilled by the spectral function (not
only in the static approximation).

Now we do a full calculation (no static approximation anymore). In this case, we need to specify the
smearing parameter J,, to compute the dynamic selfenergy from Eq.(75). In order to be tidy, let us do
this calculation in another directory spectral (and let us do the same for all the subsequent calculations,
new calculations in new directories). Using this spectral.py input file

import cellconstructor as CC
import cellconstructor.ForceTensor

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn", 3)
FC3 = CC.ForceTensor.Tensor3 (dyn=dyn)
FC3.SetupFromFile(fname="". . /hessian/FC3",file_format='D3Q"')

(continues on next page)

64 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

(continued from previous page)

integration grid
k_grid=[20,20,20]

X in 2pi/Angstrom
points=[0.0,-0.1547054, 0.0]

CC.Spectral.get_full_dynamic_correction_along_path(dyn=dyn,
tensor3=FC3,
k_grid=k_grid,

el=100, de=0.1, e0=0, # energy.
—~grid

sml=10.0,sm0=1.0,nsm=3, #
—smearing values

T=300,

g_path=points,
static_limit = True,
filename_sp="full_spectral_func_X')

where now we have specified that we want to do the calculation with 3 smearing values (equally spaced)
between 1.0 and 10.0 cm-1 (thus we will have 1.0, 5.5, and 10.0 cm-1) With

$ mpirun -np 4 python spectral.py > spectral.out

in output we have three files with the spectral functions, one for each smearing value. In general, conver-
gence must be studied with respect to the integration k-grid and smearing used. Plotting the static result
and the dynamic result for sm=1.0 cm-1, both computed with 20x20x20 k-grid, we see this result

5.2. Calculations on PbTe 65

SSCHA SCHOOL 2023

3 T | T
B — static)
15| — dynamic (§_ = 1.0cm Y -
-y v s
2 _
- L i
% 1.5+ —
—
=
b o 4
l— —
05— —
1 I { L
20 40 60 80

Q(ecm 1)

Therefore, we can conclude that in X the SSCHA phonons are barely affected by the interaction. How-
ever, the situation is different if analogous calculation is done in T".

Exercise

In T, do the same calculations previously done in X, and plot the results

This is the result you should obtain

66 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

0.5 T

—— Hessian
— static

e 1
— d}fnumlc(bm:l.() cm)

o(1/em™1)
5
h
[
|

Notice that here the triple-degenerate optical mode of the Hessian dynamical matrix is splitted into due
different peaks of the static spectral function (LO and double degenerate TO). This is due to the LO-
TO splitting occurring in PbTe. The frequencies in the Hessian dynamical matrix in I' refer only to
the short-range part of the FCs. However, the long-range dipole-dipole contribution coming from the
Effective Charges (nonanalytic contribution), which is at the origin of the LO-TO splitting, is taken into
account when the spectral function is computed. Moreover, notice that when dynamic spectral function
is considered, the double-degenerate TO mode gets smeared, showing a strong non-Lorentzian character.
When 4x4x4 supercell calculations are performed, it clearly appears a satellite peak.

Before continuing the spectral analysis, let us spend some time to investigate the static correction. As
said, the static spectral function is nothing but a collection of Dirac-deltas centered around the Hessian
eigenvalues. Therefore, in the static case the only information are the eigenvalues, there is not a complex
spectrum to be analyzed. Indeed, there is a routine that we can use to compute the static correction for
any q point, and for any integration grid. With this input file static.py

import cellconstructor.ForceTensor
import cellconstructor as CC
import numpy as np # will be used just to create a path

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn",3) # SSCHA matrices
FC3 = CC.ForceTensor.Tensor3(dyn=dyn)
FC3.SetupFromFile(fname=". . /hessian/FC3",file_format='D3Q")

(continues on next page)

5.2. Calculations on PbTe 67

SSCHA SCHOOL 2023

(continued from previous page)

integration grid
k_grid=[4,4,4]

Xcoord=0.1547054
points=[[0.0,z,0.0] for z in np.linspace(-Xcoord,Xcoord,100)] # create the,
—path

you can also download the path from a.
—file

CC.Spectral.get_static_correction_along_path(dyn=dyn,
tensor3=F(C3,
k_grid=k_grid,
T=300,
g_path=points)

with

$ mpirun -np 4 python static.py > static.out

we obtain the file v2+d3static_freq.dat, done like this

0.000000 22.6699858 22.6699858 ... 22.1602770 22.1717260 ...
0.003125 22.7847829 22.7847829 ... 29.9763683 80.8414572 ...

where the first column is the lenght of the path in 2:math:pi/Angstrom, the next (6, in this case) columns
are the SSCHA frequencies, and the next (6, in this case) columns are the SSCHA+static bubble self-
energy-corrected frequencies. This is the plot obtained with this result

68 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

— SSCHA
— SSCHA+static corr.

®(cm)

Therefore, as long as one is interested only in the static correction, e.g. because one wants to study
the structural instability, the routine get_static_correction_along_path is the one that has to be
employed. Indeed, notice that this is the proper way to detect instabilities (imaginary frequencies) in
points of the Brillouin zone that do not belong to the grid used to compute the Hessian. One should not
Fourier interpolate the Hessian matrices computed on a grid, in order to obtain the frequency dispersion
along a path, but rather should interpolate the correction and add it to the SSCHA frequency, point by
point (which is what we are doing here). Moreover, in this way we can increase the integration k-grid to
reach the convergence. Notice that the LO-TO splitting has been properly taken into account.

We can now go back to the spectral calculations. In general, calculations done with Eq.(70) can be heavy,
but often the off-diagonal terms of the phonon self-energy in the mode basis set can be neglected and use
Egs. (78), (79), (80). This is the case of PbTe. With this input file nomm_spectral.py

import cellconstructor as CC
import cellconstructor.ForceTensor

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn", 3)
FC3 = CC.ForceTensor.Tensor3(dyn=dyn)
FC3.SetupFromFile(fname=". . /hessian/FC3",file_format='D3Q")

integration grid
k_grid=[20,20,20]

(continues on next page)

5.2. Calculations on PbTe 69

SSCHA SCHOOL 2023

(continued from previous page)

G=[0.0,0.0,0.0]
points=G

CC.Spectral.get_diag_dynamic_correction_along_path(dyn,
tensor3=FC3,
k_grid=k_grid,
el=150, de=0.1, e0=0.0,
sml=1.0, sm0=1.0,

nsm=1,
g_path=points,
T=300.0)

and

$ mpirun -np 4 python nomm_spectral.py > nomm_spectral.out

we obtain several files:
» spectral_func_1.00.dat

with the structure

len (2pi/Ang), ene. (cm-1), spec. func. (1/cm-1), spec. fun..
—mode comp. (1/cm-1)

oo

0.000 0.000 0.000 -0.000 0.
—000

0.000 0.100 1.527 0.509 0.
—509

0.000 0.200 2.387 0.795 0.
—795

The file is made by several blocks, one for each g point of the path considered (now we
have just one point, thus one block). The first column of the block gives the length of the
path (at that point). The second and third column give the energy and total spectrum,
respectively. The subsequent columns give the contribution to the spectrum given by
each mode (Cfr. Eqgs.(78),(79)). Plotting the 3rd vs 2nd column you can verify that in
this case the spectrum is essentially identical to the one already obtained with the full
formula (i.e. to the spectrum obtained considering the off-diagonal terms of the self-
energy too). Notice that in this file we have the spectrum given by the three acoustic
modes in I". We did not consider the translational modes (because trivial) in the calcu-
lation done with ger_full_dynamic_correction_along_path, where the flag notransl
by default was set equal to True.

 spectral_func_lorentz_one_shot_1.00.dat, spectral_func_lorentz_perturb_1.00.dat

These files have the same structure of spectral_func_1.00.dat. However, now the
spectral functions are computed in the Lorenztian approximation, Eq.(81), using
the one-shot, Eqs.(84),(85) and the perturbative, Eqs.(86),(87), values of the energy

70 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

and HWHM. The codes offers also the possibility to use a still very tentative ap-
proach to solve the self-consistent relation Eqs.(82),(83), and produce the relative
Lorentzian spectral functions. Plotting the spectral functions of the TO mode from
spectral_func_1.00.dat and spectral_func_lorentz_one_shot_1.00.dat we obtain this

— NoMM spectral function
— NoMM Lorentzian spectral function 4

G (l/em)

0,05 —

Q (cm'l)

This confirms the strong non-Lorentzian character of this mode
* v2_freq_shift_hwhm_one_shot_1.00.dat, v2_freq_shift_hwhm_perturb_1.00.dat

They have the structure

1)

For each g point there is a line, with the lenght along the path, the SSCHA frequencies
for that point, w, (q), the energy shift A, (q) = ,(q) —w,(q) and the HWHM T, (q).

* freq_dynamic_one_shot_1.00.dat, freq_dynamic_perturb_1.00.dat

They have the structure

5.2. Calculations on PbTe 71

SSCHA SCHOOL 2023

For each g point there is a line, with the lenght along the path, the shifted frequencies
Q.(q) = wu(q) + Au(q) (sorted in incresing value, in principle different from the
SSCHA-frequency increasing order) and the corresponding HWHMs T',,(g). This is
the file that has to be used to plot the correct phonon dispersion, together with the
linewidth.

There is a dedicated routine to compute, with less computational time and more accuracy, only the energy
shift (i.e. the corrected frequency) and the linewidth of the modes in the one-shot and perturbative no-
mode-mixing Lorentzian approach. It is the get_os_perturb_dynamic_correction_along_path
routine, using the os_perturb_correction.py input file

import cellconstructor as CC
import cellconstructor.ForceTensor

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn", 3)
FC3 = CC.ForceTensor.Tensor3(dyn=dyn)
FC3.SetupFromFile(fname="". . /hessian/FC3",file_format='D3Q"')

integration grid
k_grid=[10,10,10]

points=[0.0,0.0,0.0]

CC.Spectral.get_os_perturb_dynamic_correction_along_path(dyn,
tensor3=FC3,
k_grid=k_grid,
sml=1.0, sm®=1.0,

nsm=1,
g_path=points,
T=300.0)

Exercise

Do this calculation to obtain the dispersion along the path X — I"' — X.

After that, using this script to extract the results

for i in "seq 1 6°
do
awk -v i="§{i}" '"{ if (NR > 3) printf"%22.11£%22.11£f%22.11£%22.11f\n", \
$1,8G+1D),$G+1D)+8@A+7),$(1+1)-8(i+7)}" freq_dynamic_1.0.o0s.dat > freq_5{i
done

72 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

and then using this gnuplot script plot.gp

set terminal pngcairo size 2048,1536 enhanced
set output 'freq.png'

xmin=0
xmax=0.30941100000
set xrange[xmin:xmax]

set multiplot
set object rectangle from graph 0,0 to graph 1,1 \
behind fillcolor rgb 'black' fillstyle transparent solid 0.100 noborder

plot for [i=1:6] 'freg_'.i using 1:3:4 with filledcurves \

fs transparent solid 0.125 noborder lc rgb "blue" notitle
plot for [i=1:6] 'freq_'.i using 1:2 with lines \

lc rgb "black" 1w 3.5 notitle

$ gnuplot plot.gp

you obtain this figure

120

Here you have the plot of the shifted SSCHA phonon frequencies with the linewidth. However, it must
be remembered that this picture is appropriate as long as the Lorentzian picture is valid. We already

5.2. Calculations on PbTe

73

SSCHA SCHOOL 2023

know that at least in I' this is not really the case (as said, this is even more evident if the calculation
is done with a 4x4x4 supercell). In that case, the best thing to do is a spectral calculation (full, or in
the no-mode-mixing approximation), and use the three columns (lenght of the path & energy & spectral
value) to do a colorplot. For example, this is the kind of result that you obtain for PbTe with the 4x4x4
supercell

120 0.3

100 - = 0.25

0.15

Q (em™1)

0.05

Exercise

Do the no-mode-mixing calculation along the path X — I' — X with smearing 10.0 cm ™!

We conclde this tutorial stressing that a convergence analysis in terms of integra-
tion grid and smearing has to be done in order to obtain reliable results. The
get_os_perturb_dynamic_correction_along_path routine is the best tool to do that. With
this input.py input file you can do the calculation for several integration grids

import cellconstructor as CC
import cellconstructor.ForceTensor

dyn = CC.Phonons.Phonons("../minim/SSCHA.T300.dyn", 3)
FC3 = CC.ForceTensor.Tensor3 (dyn=dyn)
FC3.SetupFromFile(fname=". . /hessian/FC3",file_format='D3Q")

for kval in [4,8,16,32]:
print ("COMPUTING ", format(kval))

CC.Spectral.get_os_perturb_dynamic_correction_along_path(dyn,
tensor3=F(C3,
k_grid=[kval,kval,kval],
sm1=20.0, sm0®=0.1,

(continues on next page)

74 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

SSCHA SCHOOL 2023

(continued from previous page)

nsm=80,

g_path=[0.0,0.0,0.0],

T=300.0,

filename_shift_lw = 'shift_hwhm_{}'.
—format(kval),

filename_freq dyn = 'freq_{}'.format(kval))
giving

$ mpirun -np 4 python input.py > output

From output you can take the list of smearing values and write them in a file sm.dat. After that, you can
collect the results with this extract.sh script

for grid in 4 8 16 32
do

> gridix${grid}ix${grid}.dat

while read sm

do

tail -1 shift_hwhm_${grid}_${sm}.os.dat \

| awk -v sm="${sm}" '"{printf"%11.7£\t%22.11f\n",sm,$(NF-1)}" \

>> gridfx${gridix${grid}.dat

done < sm.dat

done

giving

$ bash extract.sh

S0 as to obtain the files 4x4x4.dat, 8x8x8.dat, 16x16x16.dat, and 32x32x32.dat. Plotting them you obtain

(]

——

— 4x4x4
— B8x8x8
—_— 16x16x16 [T—

sl — 32x32x32 B

HWHM (cm')
|

0,5 —

From the plot, you can see that you need at least a 8x8x8 grid to obtain a converged value, using smearing
equal to 1.0 cm-1.

5.2. Calculations on PbTe 75

SSCHA SCHOOL 2023

76 Chapter 5. Hands-on-session 4 - Calculation of spectral properties with the Self
Consistent Harmonic Approximation

CHAPTER
SIX

HANDS-ON-SESSION 5 - RAMAN AND INFRARED SPECTRA WITH
THE TIME-DEPENDENT SELF CONSISTENT HARMONIC
APPROXIMATION

In the previous tutorial, you learned how to compute the spectral function by integrating the bubble in the
Fourier space, with the dynamical ansatz formulated by Bianco et al, Physical Review B, 96, 014111,
2017. Instead, we will employ the Lanczos algorithm within the Time-Dependent Self-Consistent Har-
monic Approximation (TD-SCHA) Monacelli, Mauri, Physical Review B 103, 104305, 2021.

For this reason, we need the package tdscha (it is suggested to configure it with the Julia speedup to run
faster, see the installation guide).

6.1 Computing the IR signal in ICE

We use an ensemble already computed of the phase XI of ice (low-temperature ice ad ambient pressure
and prototype of standard cubic ice) to get the IR spectrum.

Inside the directory data, we find an already calculated ensemble of ice XI at OK with the corresponding
original dynamical matrix start_dyn_icel employed to generate the ensemble and the dynamical matrix
final_dyn_icel after the SSCHA minimization.

6.1.1 An introduction

The infrared spectrum is related to the dipole-dipole response function:
oo .
i) = [t o)
—0o0
where the average (M ()M (0)) is the quantum average at finite temperature.

Exploiting the TD-SCHA formalism introduced in the previous lecture, this response function can be
written as:

xam (w) = 7(M)G(w)g(M) (6.1.1)

where G(w) is the TD-SCHA green function, while the 7 and q are vectors that quantify the perturbation
and response, respectively.

In particular, if we neglect two-phonon effects (nonlinear coupling with light), we get that

ZOCGZCY
MOEDS 2 Gap(w)
ab

77

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.014111
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.014111
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.104305

SSCHA SCHOOL 2023

where Z,, is the Born effective charge of atom a, with polarization «, and G4 (w) is the one-phonon
green function, (its imaginary part is precisely the spectral function).

Indeed, we need to compute the effective charges. This can be done directly by quantum espresso using
linear response theory (ph.x).

Exercise
Use the knowledge of cellconstructor to extract a structure file from the final dynamical matrix to sub-
mit the calculation of the dielectric tensor, Effective charges, and Raman tensor in quantum espresso.

Hint. The structure is the attribute structure of the Phonons object. The structure in the SCF file can
be saved with the save_scf method of the Structure object.

You can then attach the structure to the header of the espresso ir_raman_header.pwi.

Notice that we are using norm-conserving pseudo-potentials and LDA exchange-correlation functional,
as the Raman Tensor in quantum espresso is implemented only with them. However, it is usually an
excellent approximation. ir_raman_header.pwi.

You must run the pw.x code and the ph.x code (ir_raman_complete.phi), which performs the phonon
calculation.

We provide the final output file in ir_raman_complete.pho

6.1.2 Prepare the infrared response
We need to attach the Raman Tensor and effective charges computed inside ir_raman_complete.pho to
the final dynamical matrix, we will use this to initialize the response function calculation, as in Eq.6.1.1.

To attach the content of an espresso ph calculation (only Dielectric tensor, Raman Tensor, and Born
effective charges) to a specific dynamical matrix, use

dyn.ReadInfoFromESPRESSO("ir_raman_complete.pho™)

If you save the dynamical matrix in quantum espresso format, before the frequencies and the diagonal-
ization, there will be the Dielectric tensor

Dielectric Tensor:

1.890128098000 0.000000000000 0.000000000000
0.000000000000 1.912811137000 0.000000000000
0.000000000000 0.000000000000 1.916728724000

Followed by the effective charges and the Raman tensor.

Ehapter 6. Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent
Self Consistent Harmonic Approximation

SSCHA SCHOOL 2023

6.1.3 Submitting the IR calculation

With the following script, we submit a TD-SCHA calculation for the IR.

import numpy as np

import cellconstructor as CC, cellconstructor.Phonons
import sscha, sscha.Ensemble

import tdscha, tdscha.DynamicallLanczos as DL

Load the starting dynamical matrix
dyn_start = CC.Phonons.Phonons("start_dyn_ice")

Load the ensemble
temperature = 0 # K
population = 2
n_configs = 10000

ensemble = sscha.Ensemble.Ensemble(dyn_start, temperature)
ensemble.load("data", population, n_configs)

Load the final dynamical matrix
final_dyn = CC.Phonons.Phonons("final_dyn_ice")
final_dyn.ReadInfoFromESPRESSO("ir_raman_complete.pho™)

Update the ensemble weights for the final dynamical matrix
ensemble.update_weights(final_dyn, temperature)

Setup the TD-SCHA calculation with the Lanczos algorithm
lanczos = DL.Lanczos(ensemble)

lanczos.ignore_v3 = True

lanczos.ignore_v4 = True

If you have julia-enabled tdscha installed uncomment
lanczos.mode = DL.MODE_FAST_JULIA
for a x10-x15 speedup.

lanczos.init()

Setup the IR response
polarization = np.array([1,0,0]) # Polarization of light
lanczos.prepare_ir(pol_vec = polarization)

Run the algorithm
n_iterations = 1000
lanczos.run_FT(n_iterations)
lanczos.save_status("ir_xpol")

Congratulations! You ran your first TD-SCHA calculation. You can plot the results by using:

6.1. Computing the IR signal in ICE 79

SSCHA SCHOOL 2023

tdscha-plot.py ir_xpol.npz

The script tdscha-plot.py is automatically installed with the tdscha package.

25001

20001

1500 +

=
o
S
S

Spectrum [a.u.]

500 A

| L

T T T T T T
0 1000 2000 3000 4000 5000
Frequency [cm-1]

Fig. 6.1.1: IR spectrum with both include_v3 and include_v4 set to False.

Additionally, tdscha-plot.py takes three more parameters: the range of the frequencies to be displayed
and the smearing.

6.1.4 Deep dive into the calculation

Let us dive a bit into the calculation. The beginning of the script should be almost self-explanatory, as
we are just loading dynamical matrices, dielectric tensors, and effective charges.

The line

ensemble.update_weights(final_dyn, temperature)

deserves special attention. Here, we are changing the weights of the configurations inside the ensemble to
simulate the specified dynamical matrix and temperature, even if they differ from those used to generate
the ensemble. This is useful to compute the spectrum at several temperatures without extracting and
calculating a new ensemble each time.

Setup the TD-SCHA calculation with the Lanczos algorithm
lanczos = DL.Lanczos(ensemble)

lanczos.ignore_v3 = True

lanczos.ignore_v4 = True

lanczos.init()

Then we initialize the Lanczos algorithm for the tdscha, passing the ensemble.

The ignore_v3 and ignore_v4 are flags that, if set to True, the 3-phonon and 4-phonon scattering will be
ignored during the calculation.

As you can see from the output, our IR signal had very sharp peaks because we ignored any phonon-
phonon scattering process that may give rise to a finite lifetime.

By setting only ignore_v4 to True, we reproduce the behavior of the bubble approximation. Notably,
while the four-phonon scattering is exceptionally computationally and memory demanding in free energy

8hapter 6. Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent
Self Consistent Harmonic Approximation

SSCHA SCHOOL 2023

hessian calculations, within the Lanczos algorithm, accounting for the four-phonon scattering is only a
factor two more expensive than using just the third order, without requiring any additional memory.

Setup the IR response
polarization = np.array([1,0,0]) # Polarization of light
lanczos.prepare_ir(pol_vec = polarization)

Here we tell the Lanczos which kind of calculation we want to do. In other words, we set the » and
q vectors in Eq.6.1.1 for the Lanczos calculation. - prepare_ir - prepare_raman - prepare_mode - pre-
pare_perturbation

The names are intuitive; besides the Raman and IR, prepare_mode allows you to study the response
function of a specific phonon mode, and prepare_perturbation enables defining a custom perturbation
function.

Run the algorithm
n_iterations = 1000
lanczos.run_FT(n_iterations)
lanczos.save_status("ir_xpol")

Here we start the calculation of the response function. The number of iterations indicates how many
Lanczos steps are required. Each step adds a new pole to the green function. Therefore, many steps are
necessary to converge broad spectrum features, while much less if the peaks are sharp. We save the status
in such a way that we can get it back later.

Last, the commented line

lanczos.mode = DL.MODE_FAST_JULIA

This line only works if Julia and PyCall are correctly set up in the PC; in that case, run the script with
python-jl instead of python. It will exploit a massive speedup of a factor between 10x and 15x. The
calculation can also be run in parallel using mpirun before calling the Python executable (or python-jl).
In this case, to work correctly, you should have mpidpy installed and working.

Exercise

Compute the Lanczos with the bubble approximation and without any approximation, and check the
differences.

6.1. Computing the IR signal in ICE 81

SSCHA SCHOOL 2023

2001

=
7]
=]

Spectrum [a.u.]
=
Q
[=]

50

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Frequency [em-1]

Fig. 6.1.2: IR signal accounting for the three-phonon scattering

300

2501

Spectrum [a.u.]
= Y]

3 2

L

=
o
S

o
=1
L

o
L

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Frequency [cm-1]

Fig. 6.1.3: IR signal accounting for all anharmonic scattering. The peaks that appear slightly below 2500
cm-1 is a combination mode known to be present in ice. See Cherubini et al,] Chem Phys 155, 184502,
2021

Exercise

Try to see how different polarization of the light affects the result.

6.1.5 Analyze the output

In the last part, we employed the script tdscha-plot.py to display the simulation result. This is a quick
way to show the results of a calculation.

Here, we will dive deeper into the calculation output file to extract the response function and get the
results.

The Lanczos algorithm provides a set of coeflicients a;, b;, and ¢; through which the green function is
evaluated thanks to a continued fraction:
1

—)2 bicy
ar — (w+1n)% + o (oin s 2

Gw) =

&hapter 6. Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent
Self Consistent Harmonic Approximation

https://pubs.aip.org/aip/jcp/article-abstract/155/18/184502/199619/The-microscopic-origin-of-the-anomalous-isotopic?redirectedFrom=fulltext
https://pubs.aip.org/aip/jcp/article-abstract/155/18/184502/199619/The-microscopic-origin-of-the-anomalous-isotopic?redirectedFrom=fulltext

SSCHA SCHOOL 2023

Each iteration of the algorithm adds a new set of coefficients written in the standard output. Thanks to
this expression, we only need the series of coefficients to compute the dynamical Green function at any
frequency and with any smearing. The Green function can be computed with:

green_function = lanczos.get_green_function_continued_fraction(frequencies,..
—»;Smearing=smearing)

Here frequencies is an array in Rydberg. The response function is the opposite of the imaginary part
of the green function; thus, to reproduce the plot, we have:

import tdscha, tdscha.Dynamicallanczos

import cellconstructor as CC, cellconstructor.Units
import numpy as np

import matplotlib.pyplot as plt

Load the result of the previous calculation
lanczos = tdscha.Dynamicallanczos.Lanczos()
lanczos.load_status("ir_xpol_v4")

Get the green function
W_START = 0

W_END = 3700

N_W = 10000

SMEARING = 10

frequencies = np.linspace(W_START, W_END, N_W)

Convert in RY
frequencies_ry = frequencies / CC.Units.RY_TO_CM
smearing_ry = SMEARING / CC.Units.RY_TO_CM

Compute the green function
green_function = lanczos.get_green_function_continued_fraction(frequencies_ry,
smearing=smearing_ry)

Get the response function
ir_response_function = - np.imag(green_function)

Plot the data
plt.plot(frequencies, ir_response_function)
plt.show()

The previous script plots the data, precisely like plot-tdscha.py; however, now you have full access to the
response function, both its imaginary and real parts.

Exercise

Plot the IR data at various smearing and as a function of the number of steps (50, 100, 200, 300, and
1000). How does the signal change with smearing and the number of steps? When is it converged?

6.1. Computing the IR signal in ICE 83

SSCHA SCHOOL 2023

6.2 Raman response

The Raman response is very similar to the IR. Raman probes the fluctuations of the polarizability instead
of those of the polarization, and it occurs when the samples interact with two light sources: the incoming
electromagnetic radiation and the outcoming one. The outcoming radiation has a frequency that is shifted
with respect to the incoming one by the energy of the scattering phonons. The signal on the red side of the
pump is called Stokes, while the signal on the blue side is the Antistokes. Since the outcoming radiation
has higher energy than the incoming one in the Antistokes, it is generated only by existing (thermally
excited phonons) inside the sample. Therefore it has a lower intensity than the Stokes.

On the Stokes side, the intensity of the scattered light with a frequency redshift of w is
I{w) o (agy (W) (0)) (n(w) +1)

where « is the polarizability along the xy axis. We can do a linear expansion around the equilibrium
position of the polarizability, and we get:

3N v
Qg (W) = 8Ra?z}) (Ra(w) — Ra)
! 3N
Ay (W) =Y Zrya(Ra(w) — Ra)
a=1

If we insert it in the expression of the intensity, the average between the positions is the atomic green
function divided by the square root of the masses, and we get

ExyaEJ:yb D) (nlw
1) 2 3 S G)n(w) +

where G gy, (w) is the atomic green function on atoms a and b, while =, is the Raman tensor along the
electric fields directed in « and y and on atom a.

The multiplication factor n(w) + 1 comes from the observation of the Stokes nonresonant Raman (it
would be just n(w) for the antistokes).

As we did for the IR signal, we can prepare the calculation of the Raman raman scattering by computing
the polarizability-polarizability.

Setup the polarized Raman response
polarization_in = np.array([1,0,0])
polarization_out = np.array([1,0,0])
lanczos.prepare_raman(pol_vec_in=polarization_in,
pol_vec_out=polarization_out)

Note that here we have to specify two polarization of the light, the incoming radiation, and the outcoming
radiation.

Exercise

Compute and plot the Intensity of the Raman in the Stokes and antistokes configurations. Try with
different polarization and even orthogonal polarization; what does it change?

The Bose-Einstein factor n(w) can be computed with the following function:

&hapter 6. Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent
Self Consistent Harmonic Approximation

SSCHA SCHOOL 2023

n(w) Bose-Einstein occupation number:
w is in Ry, T is in K
n_w = tdscha.DynamicallLanczos.bose_occupation(w, T)

6.2.1 Unpolarize Raman and IR

In the previous section, we saw how to compute Raman and IR with specific polarization of the incoming
and outcoming radiation, and on oriented crystals (single crystals). However, the most common situation
is a powder sample probed with unpolarized light.

In this case, we need to look at the Raman and IR response for unpolarized samples. While this is just
the average of the IR signal’s x, y, and z, the Raman is more complex. In particular, unpolarized Raman
signal can be computed from the so-called invariants, where the perturbations in the polarizations are
the following:

Iy= :1))(:1::1: +yy + 22)%/9
Ip, = (zx —yy)*/2
Ip, = (zx — 22)%/2
Ip, (yy — 22)%/2

= 3(ay)”
= 3(y2)*
= 3(x2)°

The total Intensity of unpolarized Raman is:

Tunpot (W) = 45 - T, (w) + 7 ZIB

The tdscha code implements a way to compute each perturbation separately. For example, the Raman
response related to I 4 is calculated with

lanczos.prepare_raman(unpolarized=0)

While the I, is computed using index ¢. For example, to compute Ip,:

To compute I_B5 we do
lanczos.prepare_raman(unpolarized=5)

To get the total spectrum, you need to add the scattering factor n(w) + 1 and sum all these perturbation
with the correct prefactor (45 for 14 and 7 for the sum of all Ip).

To reset a calculation and start a new one, you can use

lanczos.reset()

which may be called before preparing the perturbation.

Exercise

Compute the unpolarized Raman spectrum of ice and plot the results.

6.2. Raman response 85

SSCHA SCHOOL 2023

35000

30000 -

25000 +

[a.u.]
o
o
(=]
o
o

15000

Intensity

10000 4

5000 -

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Raman shift [em-1]

You should employ a supercell size sufficiently big to converge the simulation properly. In this case, the
1x1x1 supercell is too tiny to converge the calculation and get meaningful results.

8hapter 6. Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent
Self Consistent Harmonic Approximation

CHAPTER
SEVEN

HANDS-ON-SESSION 6 - THE SSCHA WITH MACHINE LEARNING
POTENTIALS

The minimization of the variational free energy demands a large number of single-point density func-
tional theory (DFT) calculations. These calculations are performed on supercells, repetitions of the
primitive unit cell. DFT calculations can become very costly very fast if we need to increase the size
of the supercell. This can happen in case we have very slowly decaying second-order force constants,
large primitive unit cells, or simply very low symmetry. In some of these cases, DFT is prohibitive due
to the large number of atoms per calculation or we simply need a very large number of configurations to
converge our results (for example when we need to compute free energy hessian to check the dynamical
stability of the system).

In the last ten years, there has been a large amount of research put into developing machine-learned
(ML) interatomic potentials. Contrary to the traditional interatomic potentials, they do not have a fixed
analytical form and thus are much more flexible and transferable. They are usually trained on a very
large number of DFT data and have very good accuracy. ML potentials are considerably slower than the
traditional interatomic potentials, however still orders of magnitude faster than DFT, with a considerably
better scaling with a number of atoms.

The synergy between SSCHA and machine learning interatomic potentials is obvious. If we can use the
machine learning interatomic potentials as a calculator for forces, stresses, and energies we can go to
much larger supercells and numbers of configurations. The stochastic sampling employed by SSCHA
gives a very good method for obtaining training sets needed to train machine learning interatomic poten-
tials. The force, energy and stresses errors produced by ML interatomic potentials will influence SSCHA
results less due to the averaging effects (in case the errors are not biased).

There are a number of freely available implementations of ML interatomic potentials (Gaussian Approx-
imation Potentials, NequlP, pacemaker, etc.), and at this point, they can be used without a large prior
knowledge of the theory behind ML potentials.

7.1 Hands-on exercise

For this exercise we will be using Gaussian Approximation Potentials, however, the framework can be
applied to any other type of ML interatomic potential. In the exercise, we will obtain the training data
from the Tersoff interatomic potential, instead of the DFT.

We have provided starting dynamical matrices calculated for the structure at 0 K. Now we will calculate
training and test ensemble with Tersoff potential:

from quippy.potential import Potential
import cellconstructor as CC

(continues on next page)

87

https://libatoms.github.io/GAP/
https://libatoms.github.io/GAP/
https://nequip.readthedocs.io/en/latest/
https://pacemaker.readthedocs.io/en/latest/
https://libatoms.github.io/GAP/

SSCHA SCHOOL 2023

(continued from previous page)

import cellconstructor.Phonons
import sscha, sscha.Ensemble

temperature = 0.0 # Temperature at which we generate SSCHA configurations
nconf_train = 1000 # Number of configurations in the training set
nconf_test = 500 # Number of configurations in the test set

Load the Tersoff potential that we want to fit with ML GAP

pot = Potential('IP Tersoff',
param_filename="./06_the_SSCHA_with_machine_learning_potentials/ip.

—parms.Tersoff.xml")

Load dynamical matrices

dyn_prefix = './06_the_SSCHA_with_machine_learning_potentials/start_dyn'

ngirr = 3

dyn = CC.Phonons.Phonons(dyn_prefix, nqirr)

Generate training ensemble

ensemble_train = sscha.Ensemble.Ensemble(dyn, TO=temperature,
supercell = dyn.GetSupercell())

ensemble_train.generate(N = nconf_train)

ensemble_train.compute_ensemble(pot, compute_stress = True,
stress_numerical = False, cluster = None, verbose = True)

This line will save ensemble in correct format
ensemble_train.save_enhanced_xyz('train.xyz', append_mode = False,
stress_key = "stress", forces_key = "forces",
energy_key = "energy")

Generate test ensemble

ensemble_test = sscha.Ensemble.Ensemble(dyn, TO=temperature,
supercell = dyn.GetSupercell())

ensemble_test.generate(N = nconf_test)

ensemble_test.compute_ensemble(pot, compute_stress = True,
stress_numerical = False, cluster = None, verbose = True)

ensemble_test.save_enhanced_xyz('test.xyz', append_mode = False,
stress_key = "stress", forces_key = "forces",
energy_key = "energy")

The training of the ML interatomic potential can be done with a command gap_fit which should be
available after installing quippy-ase. This command takes a large number of arguments so it is easier to
make a bash script. We will name it train.sh:

#!/bin/bash

gap_fit energy_parameter_name=energy force_parameter_name=forces \
stress_parameter_name=stress virial_parameter_name=virial \
do_copy_at_file=F sparse_separate_file=T gp_file=GAP.xml \
at_file=train.xyz e0_method="average" \

(continues on next page)

88 Chapter 7. Hands-on-session 6 - The SSCHA with machine learning potentials

SSCHA SCHOOL 2023

(continued from previous page)

default_sigma={0.001 0.03 0.03 0} sparse_jitter=1.0e-8 \

gap={soap cutoff=4.2 n_sparse=200 covariance_type=dot_product \
sparse_method=cur_points delta=0.205 zeta=4 1 _max=4 \
n_max=8 atom_sigma=0.5 cutoff_transition_width=0.8 \
add_species }

The meaning of each argument is not important right now, but can be easily looked up on the official
website https://libatoms.github.io/GAP/gap_fit.html. We run the training command:

bash train.sh

Note, the training is memory intensive, so you may need to allocate extra memory on your virtual machine
if you are employing Quantum Mobile. 4Gb of Ram are required. You may need to restart the virtual
machine.

This should take a minute or so. Once it is finished, if the memory was enough and the command
typed correctly, one should obtain the GAP.xml file in the working directory containing the GAP ML
interatomic potential. We can use test.xyz file to check how well our ML potential reproduces data with
this simple script:

import numpy as np

import ase

from ase import Atoms

from quippy.potential import Potential

import matplotlib

import matplotlib.pyplot as plt

from matplotlib.gridspec import GridSpec

fpaths = matplotlib.font_manager.findSystemFonts()

infile = 'test.xyz' # test datasets

Read in .xyz files using ase method

atoms = ase.io.read(infile, ':', format='extxyz')
nconf = len(atoms)

print('Number of configurations in the dataset:
natoms = [len(at.symbols) for at in atoms]

+ str(nconf))

Load in newly trained GAP potential
gap_file = './GAP.xml'
pot = Potential('IP GAP', param_filename=gap_file) # Read in potential

Collect previously calculated (with Tersoff) atomic properties
dft_energies = [atom.get_potential_energy() for atom in atoms]
dft_forces = [atom.get_forces() for atom in atoms]

dft_stress = [atom.get_stress()[0:3] for atom in atoms]

Now recalculate them with GAP
en_gap = []
forces_gap
stress_gap

(]
(]

(continues on next page)

7.1. Hands-on exercise 89

https://libatoms.github.io/GAP/gap_fit.html

SSCHA SCHOOL 2023

(continued from previous page)

for i in range(nconf):

if(i%100 == 0):
print('Configuration: ', i + 1)

Make ase Atoms object
atoms_gap = Atoms(symbols = atoms[i].symbols, cell = atoms[i].cell,\
scaled_positions = atoms[i].get_scaled_positions(),\
calculator = pot, pbc = True)
Calculate total energies of structures with GAP
en_gap.append(atoms_gap.get_potential_energy())
Calculate forces on atoms
forces_gap.append(atoms_gap.get_forces())
Calculate stress and only take diagonal elements
stress_gap.append(atoms_gap.get_stress()[0:3])

Calculate errors
energy_errors = np.zeros_like(en_gap)
forces_errors = np.zeros_like(forces_gap)
GPa = 1.60217733e-19%1.0e21
stress_errors = np.zeros_like(stress_gap)
for i in range(nconf):
Calculate energy errors
energy_errors[i] = (atoms[i].get_potential_energy() -\
en_gap[i])/natoms[i]
Calculate errors on forces
forces_errors[i] = atoms[i].get_forces() - forces_gapl[i]
Calculate errors on stress
stress_errors[i] = dft_stress[i] - stress_gap[i]

Function to plot Tersoff vs GAP results

def plot_comparison(ax, datal, data2, data3, \

xlabel = 'Original energy (eV)', ylabel = "ML energy (eV)'):
sizes = np.array(data3/np.amax(data3))*2.0
ax.scatter(datal, data2, marker = 'o', s = sizes, c¢ = 'red')
lims = [np.min([ax.get_xlim(), ax.get_ylim()]),\
np.max([ax.get_xlim(), ax.get_ylim()])]
now plot both limits against eachother
ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.set_xlabel (xlabel)
ax.set_ylabel (ylabel)

Function to plot histogram of errors

def plot_error_histogram(ax, x, nbins, xlabel):
import scipy.stats as st
from scipy.stats import norm

ax.hist(x, density=True, bins=nbins)
mu, std = norm.fit(x)

xmin, xmax = ax.get_x1im(Q)

x1 = np.linspace(xmin, xmax, 100)

(continues on next page)

90 Chapter 7. Hands-on-session 6 - The SSCHA with machine learning potentials

SSCHA SCHOOL 2023

(continued from previous page)

p = norm.pdf(x1l, mu, std)
ax.plot(xl, p, 'k', linewidth=2)
ax.set_ylabel ("Probability")
ax.set_xlabel(xlabel)

Sometimes forces arrays can be ragged list, this will flatten them
def flatten(xs):
res = []
def loop(ys):
for i in ys:
if isinstance(i, list):
loop(i)
elif(isinstance(i, np.ndarray)):
loop(i.tolist())
else:
res.append(i)
loop(xs)
return res

Plot stuff

plt.rcParams["font.family"] = "Times New Roman"
plt.rcParams['mathtext.fontset'] = "stix"
plt.rcParams.update({'font.size': 16})

fig plt.figure(figsize=(6.4%3.0, 4.8%2.0))
gsl = GridSpec(2, 3)

ax00 = fig.add_subplot(gsl[0, 0])

plot_comparison(ax00, dft_energies, en_gap, energy_errors, \

xlabel = 'Original energy (eV)', ylabel = 'ML energy (eV)')

ax01 = fig.add_subplot(gs1[0, 1])

plot_comparison(ax®1l, dft_forces, forces_gap, forces_errors, \

xlabel = r'Original force (eV/\AAS)', ylabel = r'ML force (eV/\AA)")
ax02 = fig.add_subplot(gsl[0, 2])

plot_comparison(ax®2, np.array(flatten(dft_stress))*GPa, \
np.array(flatten(stress_gap))*GPa, np.array(flatten(stress_errors))*GPa, \
xlabel = 'Original stress (GPa)', ylabel = "ML stress (GPa)')

ax10 = fig.add_subplot(gsl[1l, 0])

plot_error_histogram(ax1l®, energy_errors, 100, 'Energy error (eV/atom)')
axll = fig.add_subplot(gs1i[1l, 1])

flattened_forces = flatten(forces_errors)

plot_error_histogram(axll, flattened_forces, 100, 'Force error (eV/\AAS)")
axl2 = fig.add_subplot(gsl[1l, 2])

plot_error_histogram(ax12, np.array([item for sublist in stress_errors for.
—item in sublist])*GPa,\

100, 'Stress error (GPa)')

(continues on next page)

7.1. Hands-on exercise 91

SSCHA SCHOOL 2023

(continued from previous page)

fig.savefig('test.pdf")
plt.show()

In the upper panel figures, ideally, we would like points to lie on the diagonal. When fitting interatomic
potential we aim for normal distribution of errors centered at O (without bias) with as small as possible
standard deviation. We should have very nice results for energies and forces. Now that we are happy with
the potential let us use it to relax SSCHA at 2000 K:

from quippy.potential import Potential
import cellconstructor as CC
import cellconstructor.Phonons

Import the SSCHA engine (we will use it later)
import sscha, sscha.Ensemble, sscha.SchaMinimizer, sscha.Relax

Declare SSCHA variables
temperature = 2000.0
nconf = 1000

max_pop = 10000

Load in the GAP potential
gap_file = './GAP.xml'
pot = Potential('IP GAP', param_filename=gap_file)

Load in the SSCHA dynamical matrices

dyn_prefix = './06_the_SSCHA_with_machine_learning_potentials/start_dyn'
ngirr = 3

dyn = CC.Phonons.Phonons(dyn_prefix, nqgirr)

Relax the structure at 2000 K

ensemble = sscha.Ensemble.Ensemble(dyn, TO=temperature,
supercell = dyn.GetSupercell())

ensemble.generate(N = nconf)

minimizer = sscha.SchaMinimizer.SSCHA_Minimizer (ensemble)
minimizer.min_step_dyn = 0.1

minimizer.kong_liu_ratio = 0.5

minimizer.meaningful_factor = 0.001

minimizer.max_ka = 100000

relax = sscha.Relax.SSCHA(minimizer, ase_calculator = pot,
N_configs = nconf, max_pop = max_pop, save_ensemble = True)
relax.vc_relax(ensemble_loc="Ensemble_location")
relax.minim.dyn.save_ge('final_dyn")

We can check minimization procedure
relax.minim.plot_results(save_filename = 'sscha', plot = False)

We have relaxed SSCHA at 2000 K. We can check that everything went well in “sscha” file. However,
we do not know whether this is correct. We need to check how our ML potential performs at 2000 K.

92 Chapter 7. Hands-on-session 6 - The SSCHA with machine learning potentials

SSCHA SCHOOL 2023

Exercise:

Let’s create a dataset of SSCHA-generated configuration at 2000 K using GAP relaxed dynamical
matrices and compute it using Tersoff potential. Next, check the performance of the GAP ML potential
against this new dataset.

Excercise:

We should see GAP performing quite worse compared to the test.xyz case. How can we improve GAP
potential? Let’s do it.

Excercise:

How do the Tersoff phonons compare to GAP phonons?

Excercise:

Does this translate to larger supercells?

7.1. Hands-on exercise 93

SSCHA SCHOOL 2023

94 Chapter 7. Hands-on-session 6 - The SSCHA with machine learning potentials

CHAPTER
EIGHT

HANDS-ON-SESSION 7: CALCULATION OF THE
ELECTRON-PHONON INTERACTION AND SUPERCONDUCTING
PROPERTIES WITH THE SSCHA

In this hands-on-session we will learn to calculate the electron-phonon interaction and superconductiv-
ity properties in strongly anharmonic systems combining electron-phonon matrix elements calculated
within density-functional perturbation theory (DFPT), as implemented in Quantum Espresso (QE), and
the anharmonic phonon frequencies and polarization vectors obtained with the SSCHA. For that purpose
we will use a slightly modified version of Quantum Espresso version 5.1.0, which includes some extra
features developed by us that can be used to combine the electron-phonon matrix elements with real
space SSCHA force constants, calculate the a® F'(w), calculate T, with empirical equations, and solve
isotropic Migdal-Eliashberg equations.

8.1 Calculation of the electron-phonon matrix elements

As an example we will use a non-converged calculation on PdH, a strongly anharmonic superconductor,
in which the Pd atoms form a fcc lattice and H atoms sit at the octahedral interstitial sites. The crystal
structure is the rock-salt one, whose space group is F'm3m.

We will perform first a harmonic phonon calculation and the calculation of the electron-phonon coupling
constant for the irreducible q points in a 2x2x2 grid. In order to know how many irreducible q points
are there for a given crystal one can use the kpoints.x program of QE (for instance, in the QE version
distributed with the SSCHA, one can find it in ge-5.1.0_elph/PW/tools). In this case there are only three
q points in the irreducible grid. For a particular q point, the calculation of the electron-phonon matrix
elements is performed in three steps:

1. Perform a standard DFT calculation of the crystal structure

2. Perform a standard DFPT to calculate the harmonic dynamical matrix at a particular point in the
grid as well as the derivative of the Kohn-Sham (KS) potential for this particular q point. The latter
will be needed for the electron-phonon calculation.

3. Perform a non-self-consistent calculation of the band structure in a finer electronic k point grid,
read the derivative of the KS potential, read the harmonic dynamical matrix to obtain the phonon
frequencies and polarization vectors, and calculate the electron-phonon matrix elements.

The input we will use for the standard DFT calculation that we will use is the following:

&control
! Type of calculation
calculation = 'scf’

(continues on next page)

95

SSCHA SCHOOL 2023

(continued from previous page)

! Show more details in the output

verbosity = 'high'
! Calculate stress tensor
tstress = .true.
! Calculate forces
tprnfor = .true.
! Prefix for tmp files
prefix = 'pdh’
! Location of the pseudopotentials
pseudo_dir = A
! Folder for the tmp files
outdir = './tmp'
/
&system
! Type of unit cell
ibrav = 2
! Lattice parameter in a®, Bohr length
celldm(l) = 7.80
! Number of atoms
nat = 2
! Number of atom types
ntyp = 2
! Plane-wave cutoff in Ry
ecutwic = 30.0
! Density cutoff in Ry
ecutrho = 300.0
! It is a metal so use smearing
occupations = 'smearing’
! Type of smearing
smearing = "mp'
! Broadening of the smearing in Ry
degauss = 0.020
/
&electrons
| Parameter for the DFT scf cycle
mixing_beta = 0.7
! Energy threshold to stop the scf cycle
conv_thr = 1.0d-8
/

ATOMIC_SPECIES

! Pseudopotential for Pd

Pd 106.42 Pd.pz-nd-rrkjus.UPF

! Pseudopotential for H

H 1.00794 H.pz-rrkjus.UPF
ATOMIC_POSITIONS {crystal}

Pd 0.0000 0.0000 0.0000

H 0.5000 0.5000 0.5000
K_POINTS {automatic}

10 10 10 1 1 1

96 Chapter 8. Hands-on-session 7: Calculation of the electron-phonon interaction and
superconducting properties with the SSCHA

SSCHA SCHOOL 2023

The reader is referred to the official QE guide to check the all the details about the input files used,
even if a short description is provided here. The pseudopotentials can be found in the folder 07_sim-
ple_electron_phonon/pseudos/ .

If this input file was named as pw.in, we would run QE as follows:

ge-5.1.0_elph/bin/pw.x < pw.in > pw.out

This will calculate the Kohn-Sham potential, needed for the phonon and electron-phonon calculations,
apart from the usual total energy and forces of the structure. Note that this is not a converged calculation.
One should carefully check the convergence with respect to the cutoffs, smearing, k-point grids, etc.

The second step is to calculate the harmonic dynamical matrix within DFPT. This is a model input file
to calculate it in the first (the I" point) q point of the 2x2x2 grid.

Phonon calculation on the 1st point of a 2x2x2 q point grid

&inputph
! Prefix for tmp files (same as for pw.Xx)
prefix = 'pdh'
! Folder for tmp files (same as for pw.x)
outdir = './tmp/’'
! Name of dynamical matrices calculated
fildyn = "harmonic_dyn"
! Mass of 1st atom type in m.a.u
amass(1) = 106.42
! Mass of 2nd atom type in m.a.u
amass(2) = 1.00794
! File where the derivative of the KS potential will be stored
fildvscf = 'pdh_dv'
! Calculate the phonons in a grid nql x ng2 x nq3 grid of q points
ldisp = .true.
nql =2
ng2 =2
nqg3 =2
! Threshold for the self-consistent loop
tr2_ph = 1.0d-16
! First q point to calculate
start_q =1
! Last q point to calculate
last_q =1
&end

The reader is referred to the official QE guide for more details on the input parameters. If this input file
was named as ph.in, we would run QE as follows:

ge-5.1.0_elph/bin/ph.x < ph.in > ph.out

As an output we will obtain the dynamical matrix at the I" point stored in the file harmonic_dyn1.

Once we have the dynamical matrix calculated and the derivative of the KS potential stored we can
calculate the electron-phonon matrix elements using the modified version of QE. The input file is the
following:

8.1. Calculation of the electron-phonon matrix elements 97

https://www.quantum-espresso.org/Doc/INPUT_PW.html
https://www.quantum-espresso.org/Doc/INPUT_PH.html

SSCHA SCHOOL 2023

Phonon calculation on the 1st point of a 2x2x2 q point grid

&inputph
! Prefix for tmp files (same as for pw.Xx)
prefix = 'pdh'
! Folder for tmp files (same as for pw.x)
outdir = './tmp/’
! Name of dynamical matrices calculated
fildyn = "harmonic_dyn"
! Mass of 1st atom type in m.a.u
amass (1) = 106.42
! Mass of 2nd atom type in m.a.u
amass(2) = 1.00794
! File where the derivative of the KS potential will be stored
fildvsct = 'pdh_dv'
! Calculate the phonons in a grid nql x nq2 x nq3 grid of q points
ldisp = .true.
nql =2
ng2 =2
nqg3 =2
! Threshold for the self-consistent loop
tr2_ph = 1.0d-16
! First q point to calculate
start_q =1
! Last q point to calculate
last_q =1
! Do not calculate dynamical matrix
trans = .false.
! Type of electron-phonon interaction
electron_phonon = 'simple'
! Minimum Gaussian broadening in Ry for the double Dirac delta
el_ph_sigma = 0.004
! The number of Gaussian broadenings that will be studied
el_ph_nsigma = 25

! nkl x nk2 x nk3 is the grid for the non-scf calculation
! used in the electron-phonon calculations

nkl = 20

nk2 = 20

nk3 = 20

! k1, k2, k3 determine whether the grid is shifted from Gamma
k1 =1

k2 =1

k3 =1

&end

The reader is referred to the official QE guide for more details on the input parameters. If this input file
was named as elph.in, we would run QE as follows:

ge-5.1.0_elph/bin/ph.x < elph.in > elph.out

As an output we will obtain several files giving information on the phonon linewidth coming from the
electron-phonon interaction and so on. Most of them can be obtained with the standard version of QE,

98 Chapter 8. Hands-on-session 7: Calculation of the electron-phonon interaction and
superconducting properties with the SSCHA

https://www.quantum-espresso.org/Doc/INPUT_PH.html

SSCHA SCHOOL 2023

but the modified version we are providing here prints also the ‘fildyn’.elph.d.mat.’q point number’ files,
in this case harmonic_dynl.elph.d.mat.1. This file is important for our purpose as it is necessary to
combine the SSCHA dynamical matrices with the obtained electron-phonon matrix elements. What it
contains explicitly is the following:

1
Aab(q) = Np Ny Z d?Lk,n/k+qd?ﬂk+q,nk5(€nk - EF)(S(En’k+q - EF)a

!
n,n’ k

where

@ OVks
dnk,n’k-i—q = <nk’ 5ua(q) |n/k + q>

are the electron-phonon matrix elements between differen KS states |nk) (n is aband index and k the
wave number) of the derivative of the KS potential with respect to the Fourier transformed displacement
in Cartesian basis. In the above equations lower case latin indexes (a .. .) denote both atoms in the unit cell
as well as Cartesian indexes. Above N is the density of states (DOS) at the Fermi level per spin, er is the
Fermi energy, Ny the number of k points in the sum. The file contains first the Gaussian broadening used
in the calculation (DOS and double Dirac delta in the equation), the DOS at the Fermi level calculated
with that broadening, and later prints the elements of the A®’(q) matrix. Then it continues with the same
data for the next broadening calculated.

Exercise

* Calculate the electron-phonon matrix elements for the other q points in the 2x2x2 grid.

8.2 The SSCHA calculation

This system, even with this unconverged parameters, is extremely anharmonic and the SSCHA strongly
renormalizes the phonon spectrum.

Exercise

* Perform a SSCHA calculation on a 2x2x2 supercell to obtain renormalized phonon frequencies.

As performing the SSCHA even with this unconverged parameters may take a considerable time,
we provide auxiliary SSCHA dynamical matrices obtained with few configurations in 07_sim-
ple_electron_phonon/sscha/ with the name sscha_T0.0_dyn*.

8.3 Combine the SSCHA dynamical matrices with the electron-
phonon matrix elements

We will now combine the SSCHA dynamical matrices with the electron-phonon matrix elements cal-
culates previously. In order to do that (the reason will be apparent later) we will first Fourier transform
the SSCHA dynamical matrices and create the real space SSCHA force constants. We can do that with
the q2r.x code of QE. Let’s first copy the harmonic_dynO obtained in the phonon calculations, file that
contains the list of q points in the 2x2x2 grid, to the folder where the SSCHA dynamical matrices are
and let’s name it following the new notation:

8.2. The SSCHA calculation 99

SSCHA SCHOOL 2023

cp {PATH_TO_HARMONIC_CALCULATION}/harmonic_dyn® {PATH_TO_SSCHA_RESULTS}/sscha_
~T0.0_dyn®

Now we are ready to perform the Fourier transform. Let’s prepare the input for q2r.x:

&input
! Name of dynamical matrices
fildyn = ‘'sscha_T0.0_dyn'
I Type of ASR imposed
zasr = 'crystal'
! Name of obtained force constants
flfrc = 'sscha_T0.0.fc'

/

More details about the input for q2r.x can be found here. If the input file was named as q2r.in, we would
run it as

ge-5.1.0_elph/bin/q2r.x < g2r.in > q2r.out

This will create the sscha_T0.0.fc file with the real space force constants.

Now we are ready to combine these SSCHA real space force constants with the electron-phonon matrix
elements calculated with DFPT. For that the easiest thing to do is to copy the SSCHA force constants file
(%&&I&QRﬁmdmeM%wmﬂemeAWM)mm%%“mﬁmmwﬁmmmmqﬂwﬁemhdmmﬁﬁoa
new folder. We will use the elph_fc.x, which is written by us based on matdyn.x of QE and is not present
in the QE distribution, to perform this calculation. The input for this code looks as follows:

Calculation of superconducting properties with elph_fc.x

&input
! ASR type imposed
asr = 'crystal’
! Mass of 1st atom in m.a.u
amass (1) = 106.42
! Mass of 2nd atom in m.a.u
amass(2) = 1.00794
! File with the SSCHA FCs
flfrc = 'sscha_T0.0. fc'
! Prefix for the files with the elph
fildyn = '"harmonic_dyn'
! Number of broadenings for the phonon Dirac Delta
nbroad = 1
! Gaussian broadening for the Dirac delta in cm-1
minbroad = 10
/
.004 ! Broadening for the electrons chosen
3 ! Number of q points in IBZ followed by the q list (in 2pi/a) and.
omultiplicity

0.000000000000000E+00 0.000000000000000E+00 0.000000000000000E+00 1
0.500000000000000E+00 -0.500000000000000E+00 0.500000000000000E+00 4
0.000000000000000E+00 -0.100000000000000E+01 0.000000000000000E+00 3

If the input file was named as elph_fc.in, we would run the code as follows:

100Chapter 8. Hands-on-session 7: Calculation of the electron-phonon interaction and
superconducting properties with the SSCHA

https://www.quantum-espresso.org/Doc/INPUT_Q2R.html

SSCHA SCHOOL 2023

ge-5.1.0_elph/bin/elph_fc.x < elph_fc.in > elph_fc.out

The code Fourier transforms the SSCHA real space force constants to the list of q points provided in
order to obtain the dynamica matrices at these points, and combines them with the A®(q) matrices to
calculate the Eliashberg function o2 F'(w) as

1« ¢u(a)A”(q)e;(q)”

OéQF w) = — 5 o |
() Nq abqu 2wﬂ(q) meMy (H(q))

where w,(q) and eZ(q) are, respectively, the phonon frequencies and polarization vectors obtained di-
agonalizing the Fourier interpolated SSCHA force constants at point q, and m,, the masses of the atoms.
The Dirac delta on the equation is approximated with a Gaussian of 10 cm-1 broadening, following the
input parameter. In the output elph_fc.out the code gives the SSCHA dynamical matrix at each q point,
the phonon linewidth (HWHM), the contribution to the electron-phonon coupling of each mode, etc.
Note that the code skips the Gamma point and does not consider it in the calculation. The reason is that
the equation used at this point is divergent (see discussion in Appendix C in arXiv:2303.02621). The
code also calculates the total electron-phonon coupling constant A and wy,,. It also gives the value of the
the superconducting critical temperature calculated for different values of the Coulomb pseudopotential
w* within the semiempirical McMillan and Allen-Dynes formulas.

The code also prints the calculated Eliashberg function, phonon density of states, partial electron-phonon
coupling constant, as well as the projection of both the phonon DOS and Eliashberg function on different
atoms. We can do for example plots like this one with this data:

6 1 — a°F(w)
— a’Fpy(w)

5 — a’Fy(w)
-== AMw)

4 .

3 .

2 .

1 - ,/——_-

/
|
0 .

0 200 400 600 800 1000
Frequency (cm™1)

Fig. 8.3.1: Figure with the o® F(w) Eliashberg function, its partial contributions from Pd and H atoms.
The partial contribution to the electron-phonon coupling constant is also plotted, A\(w).

8.3. Combine the SSCHA dynamical matrices with the electron-phonon matrix 101
elements

https://arxiv.org/abs/2303.02621

SSCHA SCHOOL 2023

Exercise

* Make a figure as the one above but with a different smearing for the double Dirac delta on the
electronic states. Note that the electron-phonon matrix elements were calculated for smearings
proportional to 0.04 Ry.

The fact that the elph_fc.x code works with real space SSCHA force constants allows us to combine
the calculation of the electron-phonon matrix elements in a small supercell with electron-phonon matrix
elements in a finer q point grid trivially.

Exercise

* Calculate the electron-phonon coupling constant using the electron-phonon matrix elements cal-
culated in a 4x4x4 q point grid combining it with the SSCHA force constants on a 2x2x2 super-
cell. For that use the data in 07_simple_electron_phonon/elph_matrix_elements_444 .

8.4 Solution of isotropic Migdal-Eliashberg equations

Once the Eliashberg function o® F(w) has been calculated combining the SSCHA and the electron-
phonon matrix elements, one can easily solve isotropic Migdal-Eliashberg equations, which are not
semiempirical. We provide a utility to perform this calculation as well, ME.x. This is the input file
that needs to be prepared:

&inputme
! First temperature for the calculation
t_first = 1.0
! Last temperature for the calculation
t_last = 80.00
! Total number of temperatures
t_number = 80
! Cutoff for Matsubara frequencies in Ha
wc_cutoff = 0.05
! Initial guess for the gap in meV
gap_guess = 10.
! File with the Eliashberg function
a2f_filename = "a2F.10.dat"
! mu*
mu_star = 0.10

/

Note that the cutoff for the Matsubara frequencies should be around 10 times the highest phonon fre-
quency, not bigger. If this input file was named as ME.in, we would run the code as follows:

ge-5.1.0_elph/bin/ME.x < ME.in > ME.out

In the output the code will calculate the superconducting gap as a function of temperature. In the provided
file t_gap.dat the gap as a function of temperature is provided. This can be used to generate plots like
this one to estimate the critical temperature from the temperature at which the gap closes.

102Chapter 8. Hands-on-session 7: Calculation of the electron-phonon interaction and
superconducting properties with the SSCHA

SSCHA SCHOOL 2023

10 -

Gap (meV)
[e)}

0 10 20 30 40 50 60

Fig. 8.4.1: Superconducting gap as a function of temperature.

8.5 Important remarks

The calculations above are not converged and are just meant to illustrate the use of the several codes. In
a proper calculation one should take into account the following points:

1. The electron-phonon coupling constant needs to be converged with the number of k points for the
electrons and the smearing used for the Double delta. These parameters enter into the equation of
the A®(q) matrices. The typical thing is to calculate) for different k point grids as a function of
the smearing and see for which low value of the smearing A plateaus. Note that the physical limit
is the one with infinite number of k points and 0 smearing.

2. In this example we have used auxiliary SSCHA dynamical matrices to incorporate anharmonic
effects into the calculation of electron-phonon properties. However, we could have also used those
dynamical matrices that come from the Hessian of the SSCHA free energy. Sometimes the differ-
ences are minor, but in other cases it may be important. In this cases the best approach is to calculate
the Eliashberg function with the full spectral function as described recently in arXiv:2303.07962.

8.5. Important remarks 103

https://arxiv.org/abs/2303.07962

SSCHA SCHOOL 2023

104Chapter 8. Hands-on-session 7: Calculation of the electron-phonon interaction and
superconducting properties with the SSCHA

CHAPTER
NINE

HANDS-ON-SESSION 8: EPIQ - ANHARMONICITY IN
ELECTRON-PHONON COUPLING RELATED PROPERTIES

9.1 Introduction

In this hands-on session we learn how to include anharmonic effects calculated within the SSCHA in the
calculation of electron-phonon coupling related properties using EPIq.

AA f —
w ’ iEF,_-G]
sschn T

Stochastic Self-Consistent
Harmonic Approximation

*_——\

In some systems the first principles calculation of electron-phonon coupling matrix elements can be de-
manding. EPIq (Electron-Phonon wannier Interpolation over k and g-points) is an open-source software
that allows to speed up the calculation of electron—phonon coupling related properties using the Wan-
nier interpolation technique. Details on the interpolation scheme can be found here. Within EPIq, it is
possible to include anharmonic corrections to the dynamical matrices as calculated within the SSCHA.

9.2 Requirements

In the interest of time, in this hands-on session the following starting data are at your disposal:
1. Electron-phonon matrix elements g;,, ,,(k, q) computed from first principles.
2. Wannier interpolation files which encode the trasformation to the optimally smooth subspace, Uy,
HRn) = e Sy Sy ¢ R Un ())
3. Anharmonic dynamical matrices DE?H Ak, q).

4. Harmonic dynamical matrices (as a reference) Dﬁ{ ARM (i q).

105

https://the-epiq-team.gitlab.io/epiq-site/
https://the-epiq-team.gitlab.io/epiq-site/docs/th_found

SSCHA SCHOOL 2023

Attention: A folder prepared for you with these data for the present tutorial can be downloaded
08_EPIq folder in the shared cloud. Right click on tutorial_data on the navigation bar and down-

1. The electron-phonon coupling matrix elements can be found in the mat_elem
folder. Each file corresponds to a different q-point in the first Brillouin zone.

3. The dynamical matrices are stored in the dyn_mat directory. dynqg* files are
harmonic (DEgH A(k, q)) while MoS2.Hessian.dyn* are anharmonic dynami-

cal matrices computed with the SSCHA code (DﬁgH A(k,q)).

Place all the downloaded material where you intend to run the tutorial. A suggested

load the whole folder. It contains:
2. The Wannier folder contains the files (.eig,
structure is for example:
handson_8/
I
+ - epia/
I I
| + - bin/
I I
|+ ——- src/
I
I
+ -———- MoS2/
|
+ ————= MoS2.eig
|
+ === MoS2.chk
I
+ ———=- mat_elem/
I I
| + ———=- MoS2_elph.mat.1l_g
I
+ -———- dyn_mat/
I
+ - dynq
I
+ ————- MoS2.Hessian.dyn*

106Chapter 9. Hands-on-session 8: EPIlq - Anharmonicity in electron-phonon coupling

related properties

https://ehubox.ehu.eus/s/Y48Wc8iX9Z76jqN?path=%2F08_EPIq

SSCHA SCHOOL 2023

9.3 About EPIq

Website Paper

Fig. 9.3.1: Epiq site: https://the-epig-team.gitlab.io/epig-site/
Epiq paper: http://arxiv.org/abs/2306.15462

The Electron-Phonon Intepolation over g package exploits Wannier interpolation to obtain many propri-
eties in solids. Bloch theorem allows to describe an infinite system in real space with a continuum of
Hamiltonian for different k-points in the Brillouin zone.

The properties of a material refers to a certain observable averaged over the sample.

Thanks to the Bloch theorem it is often convenient to perform the average in the reciprocal k-space. In
other words as a sum over the whole Brillouin zone of the quantities defined at each k-point.

1
=N, gFo(k)

The quality of the averaging depends on the finesse of the sampling N and of the smoothness of the
integrand function Fp (k) (a constant function is totally described with just one k-point).

Why metallic systems are difficult

Sampling localized Fermi-Dirac
feature
i _—
!
+\\ —_— I T N N T s R |
N [L L L N L B L L L
Derivative of Fermi-Dirac
I\
I [\
gt / \
7\ —_—
e \eo / N
o—o0— oo A -
T
..................

Wannier interpolation is an efficient way to refined the Brillouin zone sampling.

v

R4

— /S —

Localized real space
representation

Few k-points Many k-points

9.3. About EPIq 107

https://the-epiq-team.gitlab.io/epiq-site/
http://arxiv.org/abs/2306.15462

SSCHA SCHOOL 2023

9.3.1 Calculations available in epiq

1. Adiabatic (static) and non-adiabatic (dynamic) force constant matrices.
Electron-phonon contribution to the phonon linewidth and related quantities.
Isotropic and anisotropic Eliashberg equations.

Double Resonant Raman scattering.

A

Electron lifetime and relaxation time.

9.3.2 EPIq workflow

EPlq workflow

prefix.save | Non self-consistent

N Wannierization
calculation

pw.x wannier90.x

Electron-phonon prefix_elph.mat Rotation to real
matrix elements space

Interpolation

LINEAR RESPONSE EPlq

The core steps of any calculation employing EPIq are performed using the main executable epiq.x and
consists in two main stages.

1. A preliminary step where electron-phonon coupling matrix elements and the Hamiltonian are
Fourier-transformed to real space and written to file.

2. The electron-phonon coupling matrix elements and the Hamiltonian are transformed back to re-
ciprocal space to compute the property of interest at arbitrary k- and g- values.

9.3.3 EPIq input file

The input file is divided in three namelists:
1. &control, specifying what calculation the code will perform
2. &electrons, specifying the electronic parameters of the property to be computed
3. &phonons, specifying the phonons parameters for the property to be computed

Finally, the last lines of the input indicates the electron momentum (k-) and phonon momentum (q-)
meshes on which the matrix elements are interpolated to.

108Chapter 9. Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling
related properties

SSCHA SCHOOL 2023

9.4 Let’s practice: calculation of electron-phonon coupling related
properties for doped monolayer MoS,

In this tutorial we calculate electron-phonon coupling related properties for doped monolayer MoS», and
evaluate the effect of anharmonicity on them.

9.4.1 Wannier interpolation

As explained in the previous section, any calculation within EPIq starts with a preliminary stepreferred
to as dump. During this step, the Hamiltonian and the electron-phonon coupling matrix elements in real
space are computed and written to file, to be used in any subsequent calculation. This step is performed
only once. The input file is the following:

&control

dump_gR=. true.,
prefix="MoS2"',
elphmat_dir="./mat_elem/"

/

&electrons

/

&phonons
nql=8,
nqg2=_8,
nqg3=1,

/

Notice, in particular, the following paramters:

* dump_gR in the namelist control tell the program to save the auxiliary file containing the Hamilto-
nian and the electron-phonon coupling matrix elements in real space. Since we are not calculating
any property of the system the namelist electron and phonons are essentially empty. Only nq1,
ng2,nq3 have to be supplied in order to specifie the g-points mesh where the input electron-phonon
coupling matrix elements were computed (in this case, a 8x8x1 g-grid).

Note: In order to keep everything tidy you can use keep the el-ph matrix elements in a separate folder

9.4. Let’s practice: calculation of electron-phonon coupling related properties for 109
doped monolayer MoS»

SSCHA SCHOOL 2023

and use the variable:

&control > elphmat_dir="<path-to-folder>"

Run this preliminary calculation using:

mpirun -n <NPROC> {$path_to_epiq}/bin/epiq.x -inp dump.in > dump.out

After the dump has ended, some output files have been produced.

* The output file is binary and named G_and_H.bin contains the Hamiltonian and the electron-
phonon coupling matrix elements in the Wannier representation. If, however, ascii_G_and_H=.
true. is added in the &control namelist then the produced output file is readable and is named
G_and_H.asc.

+ .dat files containing the real space localization of the Hamiltonian and the electron-phonon cou-
pling matrix elements.

9.4.2 Check real space localization

If the Wannier transformation is well converged, the matrix elements are optimally localized in real space.
Always check their localization.

Excercise:

Using the two-columns files:
“MoS2_gw_R_ph.mu*.dat.pe_1” |R| > |G (0, R)[?
“MoS2_gw_R_el.mu*.dat.pe_1" |r| Do G (x5 0) 2

plot the averaged modulus of the electron-phonon matrix elements as a function of the distance in real
space | R|. Are they localized?

9.4.3 Phonon linewidth calculation

We would now focus on one of the system properties that can be calculated with EPIq: the phonon
linewidth 4 ,,. We will consider the Allen phonon linewidth, which is defined by the following equation:

dTw v
Yoo =t DD lmak @) d(eciqm — er)d(ecn — €r)

m,n k

where the electron-phonon coupling is defined from the deformation potential as:

gryn,n (ka q) = Z ef:l,y : dipv,7n(k7 q)/ 2]w's(v‘)q,u
s

110Chapter 9. Hands-on-session 8: EPIlq - Anharmonicity in electron-phonon coupling
related properties

SSCHA SCHOOL 2023

Example of input file for linewidth calculation of monolayer MoS»

We first calculate the mode-resolved v at the M-point of the Brillouin zone. In the following example
we perform the calculation for phonon of momentum q = M for two values of the electronic smearing.
The input parameters are explained in detail in the EPIq manual . Here is the input file:

&control
prefix="MoS2",
calculation="ph_linewidth',
read_dumped_gr=.true.,
dump_gR=. false.,
elphmat_dir="./mat_elem/"
out2json=.true.

/

&electrons
ngauss=0,
sigma_min=0.01,
sigma_max=0.05
nsigma=>5,

/

&phonons
use_alternative_dyn=.true.
prefix_alt_dyn='./dyn_mat/dynqg’
Fourier_interp_dyn=.true.,
nql=8,nq2=8,nq3=1,

/

k-points

automatic

441000

g-points

crystal

1

0.5001 !N

The linewidth calculation is then started by:

mpirun -n <NPROC> {$path_to_epiq}/bin/epiq.x -inp lw.in > lw.out

Note that this calculation is done within the harmonic approximation, as we are using the dynamical
matrices indicated by the variable prefix_alt_dyn='./dyn_mat/dynq'

9.4. Let’s practice: calculation of electron-phonon coupling related properties for 111
doped monolayer MoS»

https://the-epiq-team.gitlab.io/epiq-site/docs/manual/

SSCHA SCHOOL 2023

Parameters

e The linewidth calculation is selected by setting the calculation parameter equal to
'ph_linewidth' in the &control namelist.

* In the namelist control, read_dumped_gr, which is set to .true., indicating that electron-
phonon coupling matrix elements can be read from G_and_H.bin)

* In the namelist electrons, sigma_min, sigma_max, ngauss and nsigma specify maximum,
minimum, type and number of electronic smearing values to use. efermi and ef_from_input
specify the initial guess for the Fermi level (the Fermi level calculated by Quantum ESPRESSO
is usually a good guess) and whether the Fermi level should be re-calculated by epiq (
ef_from_input equal to . false.) or set from input (ef_from_input equal to .true.). The
variable thr_compute_k is used to restrict the calculation only to k-points possessing at least one
eigenvalue in the specified energy region near the Fermi level.

* In the namelist phonons, Fourier_interp_dyn equal to .true. asks to interpolate the dy-
namical matrices for the g-points that do not belong to the Wannier grid. Alternatively,
EPIq gives the opportunity to read eigenvalues and eigenvectors produced by matdyn.x of the
Quantum ESPRESSO package (matdyn.eig file), putting Fourier_interp_dyn=.false. and
read_modes=.true. in input, or even to directly read dynamical matrices from a matdyn.dyn
file, putting Fourier_interp_dyn=. false. and read_modes=. false. .

Output files

If the out2json flat is set to . true., the file MoS2_lambda. json will be produced. It can be automat-
ically parsed using python as in the following lines where the variable g_pts is a “dict” whose entries
are the results of the calculation for each g-point.

import json

ff = './MoS2_lambda. json'

with open(£ff,'r') as f:
g_pts = json.load(f)

first_g = g_pts["1"]

print("Fraction coordinate of the q point:", first_q["xq_frac"])
print("Electronic temperaturs used:", first_q["T"])

print("Results for the first mode:", first_q["1"])
print("Frequency of the second mode in meV:", first_q["2"]1["freq"])

Here, a simple python script to plot the linewidth esteemed with the Allen formula:

import matplotlib.pyplot as plt
import numpy as np
for q in list(q_pts.values())[:]:

for mod in range(1,10):

plt.plot(q["T"],q[f' {mod}']["gamma_allen"],label=r"$\omega_"+£f"{mod

~$={q[f"'{mod}']["freq']:.0f} (meV)",linestyle="'--"')

plt.xlabel('T (eV)")

plt.ylabel(r'$\gamma(T)$ (meV)')

(continues on next page)

112Chapter 9. Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling
related properties

SSCHA SCHOOL 2023

(continued from previous page)

plt.legend(title=f"g={ np.round(np.array(ql'xqg_frac']),2) }'")
plt.show()

The other output file, MoS2_lambda. d, contains all the properties calculated by EPIq. The way this file
is formatted is specified in output file, lw.out. Notice in particular that the first column contains the
electronic smearing, while the second column contains the Allen linewidth.

Exercise:

Perfom a convergence study of the linewidth at M as function of the smearing and the k-mesh density.
What is the minimum temperature at which the linewidth of the eighth mode is to be considered at
convergence with a k-mesh of 8x8x1 ? And of 12x12x1?

Exercise:

Which mode shows larger smearing dependence?

Inclusion of anharmonicity

Now, we want to observe what changes with the inclusion of anharmonic effects. To this aim, we need
to correctly specify the prefix of the Free-energy Hessian matrices calculated within the SSCHA using
prefix_alt_dyn='./dyn_mat/MoS2.Hessian.dyn'.

Exercise:

Compute the linewidth at ¢ = M using anharmonic dynamical matrix computed thanks to the SSCHA
code. Why it seems like the first and the second mode are exchanged with respect to the harmonic
dynamical matrices? Which are the modes presenting a larger anharmonic correction?

9.4. Let’s practice: calculation of electron-phonon coupling related properties for 113
doped monolayer MoS»

SSCHA SCHOOL 2023

Dispersion along a line

Now we want to perform the calculation of phonon linewidth along a certain crystalline direction and
produce a plot like this one:

r M

where the thickness of the lines is proportional to the calculated phonon linewidth. In order to to this,
we repeat the phonon linewidth calculation, this time considering the whole I' -M path:

&control
dump_gR=. false.,
read_dumped_gr=.true.,
prefix="MoS2",
calculation="ph_linewidth',
elphmat_dir="./mat_elem/"

&end

&electrons
ngauss=0,
sigma_min=0.01,
sigma_max=0.02
nsigma=2,

&end

&phonons
use_alternative_dyn=.true.
prefix_alt_dyn="./dyn_mat/MoS2.Hessian.dyn'
Fourier_interp_dyn=.true.,
nql=8,ng2=8,nq3=1,

&end

k-points

automatic

881 0 0 O

gq-points

crystal

11

0.001 0 0 1

0.05 0 0

0

1
0.10 0 1

(continues on next page)

114Chapter 9. Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling
related properties

SSCHA SCHOOL 2023

(continued from previous page)

0.50 0 0 1

Once the linewidth calculation has finished, we can obtain a plottable file using the 1inewidth_path.x
post-processing tool. Here is an example of input file:

&input_lambda
prefix="MoS2'
lkp_sequential=.true.
sigma_min=0.01,
sigma_max=0.02,
nsigma=2,
chosen_sigma=0.01

&end

3.159998
-1.579999
0.000000

0.000000
2.736639
0.000000

0.000000
0.000000
19.141895

crystal

11

0.001 0 0 1
0.05 0 0 1
0.10 0 0 1

0.50 0 0 1

Notice the parameter chosen_sigma, which specifies what smearing will be used to produce the plottable
file, and the lattice parameters at the end of the namelist. The post-processing is executed as follows:

{$path_to_epiq}/bin/linewidth_path.x < path.in > path.out

Finally, use the following gnuplot script plots the g-resolved linewidth for the acoustic modes:

set ylabel '{/Symbol w}(meV)'

set xlabel 'Gamma - M'

set style fill transparent solid 0.25

pl for [i=0:9] 'MoS2_lw_path.d' every 9::i u 1:2 w 1 1t rgb 'black'.
~title '

repl for [i=0:9] 'MoS2_lw_path.d' every 9::i u ($1):($2-%$3/2):($2+
—$3/2)\

w filledc 1t rgb 'red' title "'

Exercise:

Try to produce two plots of the whole phonon spectrum, comparing the harmonic and the anharmonic
result. Do you observe any differences?

9.4. Let’s practice: calculation of electron-phonon coupling related properties for 115
doped monolayer MoS»

SSCHA SCHOOL 2023

Advanced tutorial: Migdal-Eliashberg calculation using SSCHA Hessian matrices

EPIq also allows to solve the anisotropic Eliashberg equations on the imaginary axis in order to cal-
culate the k-resolved superconducting gap. We give an example for the superconducting gap of doped
monolayer MoSs at T=1 K.

&control
dump_gR=. false.,
read_dumped_gr=.true.,
prefix="MoS2"',
calculation="migdal_eliashberg',
elphmat_dir="./mat_elem/"
&end
&electrons
theta=1,
efermi=-2.0,
ef_from_input=.false.,

&end

&phonons
use_alternative_dyn=. false.
prefix_alt_dyn="./dyn_mat/MoS2.Hessian.dyn'
read_modes=. false.,
nql=8,
ng2=8,
nq3=1,

&end

&input_migdal
initialize="step',
gap_threshold=0.025,
sigma_me=0.1,
ME_Fermi_thickness=0.4,
mustar=0.1,
nmatsu=64,
nitermax=100,
alpha_mix_me=0.5,
gap_init=4.0,

&end

nkfs

64 64 1

40

Run the EPIq calculation as follows:

mpirun -n 4 {$path_to_epiq}/bin/epiq.x <input_ME > out_ME

Note that for the migdal_eliashberg calculation, the number of k-points (40 in this case) must be a
multiple of the mpi processes (4 in this case).

Notice the following parameters in the input file:
* In the &electrons namelist, theta=1.0 specifies the temperature of the calculation in Kelvin.

* In the &input_migdal namelist, sigma_me specifies the broadening (in eV) to be used in the

116Chapter 9. Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling
related properties

SSCHA SCHOOL 2023

calculation and ME_Fermi_thickness the energy range around the Fermi level where electron
eigenvalues are considered in the calculation. nmatsu indicates the number of Matsubara frequen-
cies to be employed in the sum (see here for further details:)

* The code solves the equation generating a certain number of random k-points, defined by the 64
64 1 grid in input and having an eigenvalue on the Fermi surface.

EPIq also calculates the Fermi surface using the grid specified after nkfs (64 64 1 here). After EPIq is
done, two output files are produced:

* MgB2.bxsf contains the Fermi surface in the XCrysDen .bxsf format.
* MgB2_ME.d contains the Fermi-surface resolved Eliashberg gap.

You can produce a plot of the Fermi-surface resolved superconducting gap using the plot_ME_f£s. x post
processing. Execute it as:

{$path_to_epiq}/bin/plot_ME_£s.x

This is, for example, what you get for MgB,, with its famous double gap:

1 meV 9 meV

Try to obtain the same kind of plot for MoSs using fermisurfer (github repository) typing:

fermisurfer MoS2.frmsf

Exercise:

Perform a convergence study of the average superconducting gap as function of the number of Mat-

9.4. Let’s practice: calculation of electron-phonon coupling related properties for 117
doped monolayer MoS»

https://the-epiq-team.gitlab.io/epiq-site/docs/calc/eliash/
https://mitsuaki1987.github.io/fermisurfer/
https://github.com/mitsuaki1987/fermisurfer.git/

SSCHA SCHOOL 2023

subara frequencies and k-points. What is the required value of nmatsu and k-points to have a precision

better than 0.1 meV?

Note: In order to perform a complete calculation of anharmonic electron phonon coupling related
properties within SSCHA+EPIq requires the following steps:

1. The SSCHA code — First, compute the free energy Hessian within the stochastic self-consistent
harmonic approximation (SSCHA).

2. Quantum ESPRESSO code — Then, compute electron-phonon coupling matrix elements fol-
lowing the instructions reported in the EPIq site https://the-epiq-team.gitlab.io/epiq-site/docs/
tutorials/step1/.

3. Wannier90 code — Identify the unitary transformation connecting the Bloch and the maximally-
smooth gauge (required to interpolate the electron-phonon coupling matrix elements in the Wannier
basis).

4. EPIq code — Perform the electron-phonon copuling interpolation in the Wannier basis and calcu-
late physical properties including the anharmonic correction from SSCHA.

All these open-source software can be downloaded following the instruction in each website.

If you want to know more about the full procedure, please take a look at the tutorials on the EPIq site.

118Chapter 9. Hands-on-session 8: EPIlq - Anharmonicity in electron-phonon coupling
related properties

http://sscha.eu/
https://www.quantum-espresso.org/
https://the-epiq-team.gitlab.io/epiq-site/docs/tutorials/step1/
https://the-epiq-team.gitlab.io/epiq-site/docs/tutorials/step1/
http://www.wannier.org/
https://the-epiq-team.gitlab.io/epiq-site/
https://the-epiq-team.gitlab.io/epiq-site/docs/tutorials/tutorials/

CHAPTER
TEN

HANDS-ON-SESSION 9 - THERMAL CONDUCTIVITY
CALCULATIONS WITH THE SSCHA

In previous lessons we saw how to calculate vibrational properties of material using SSCHA. Now we will
use this acquired knowledge to calculate lattice thermal conductivity of materials. We will need dynam-
ical matrices (auxiliary ones, not hessians) and the third order force constants (we already calculated
them when we checked the dynamical stability of the system). With these we can calculate materials’ har-
monic (phonon frequencies and phonon group velocities) and anharmonic properties (phonon lifetimes
and spectral functions) which is all we need to calculate lattice thermal conductivity.

10.1 Lattice thermal conductivity of silicon

As a first exercise let’s calculate lattice thermal conductivity of silicon. Silicon is very harmonic material
which means it’s lattice thermal conductivity is very high. This also makes it a good test case to check
the equivalence of Green-Kubo and Boltzmann transport equation approaches in the limit of vanishing
anharmonicity. To speed up the calculation we will use Tersoff potential to obtain the second and third
order force constants. We will do this with this simple script:

import numpy as np

from quippy.potential import Potential

from ase import Atoms

import ase.io

from ase.eos import calculate_eos

from ase.units import kJ]

from ase.phonons import Phonons as AsePhonons
from ase.constraints import ExpCellFilter
from ase.optimize import BFGS, QuasiNewton
import cellconstructor as CC

import cellconstructor.Phonons

import cellconstructor.Structure

import sscha, sscha.Ensemble, sscha.SchaMinimizer, sscha.Relax

This function will use ASE to give us a starting
guess for dynamical matrices
def get_starting_dynamical_matrices(structure_filename,
potential, supercell):
atoms = ase.io.read(structure_filename)
atoms.set_calculator(potential)

(continues on next page)

119

SSCHA SCHOOL 2023

(continued from previous page)

ecf = ExpCellFilter(atoms)
gn = QuasiNewton(ecf)
gn.run(fmax=0.0005)

structure = CC.Structure.Structure()
structure.generate_from_ase_atoms(atoms, get_masses = True)

dyn = CC.Phonons.compute_phonons_finite_displacements(structure,
potential, supercell = supercell)

dyn.Symmetrize()

dyn.ForcePositiveDefinite()

eos = calculate_eos(atoms)
v0, e®, B = eos.fit()
bulk = B / k] * 1.0e24

return dyn, bulk

Our input variables
temperature = 100.0
nconf = 1000

max_pop = 1000

Load in Tersoff potential

pot = Potential('IP Tersoff', param_filename=
'../06_the_SSCHA_with_machine_learning_potentials/ip.parms.Tersoff.xml')
supercell = tuple((4*np.ones(3, dtype=int)).tolist())

dyn, bulk = get_starting_dynamical_matrices(
'../06_the_SSCHA_with_machine_learning_potentials/POSCAR', pot, supercell)

Generate the ensemble and the minimizer objects
ensemble = sscha.Ensemble.Ensemble(dyn, TO=temperature,
supercell = dyn.GetSupercell())

ensemble.generate(N = nconf)

minimizer = sscha.SchaMinimizer.SSCHA_Minimizer(ensemble)
minimizer.min_step_dyn = 0.1

minimizer.kong_liu_ratio = 0.5
minimizer.meaningful_factor = 0.001

minimizer.max_ka = 1000

Relax structure

relax = sscha.Relax.SSCHA(minimizer, ase_calculator = pot,
N_configs = nconf, max_pop = max_pop, save_ensemble = True)
relax.vc_relax(static_bulk_modulus = bulk,

ensemble_loc = "directory_of_the_ensemble™)

Generate ensemble for third-order FC with the relaxed dynamical matrices
new_ensemble = sscha.Ensemble.Ensemble(relax.minim.dyn, TO=temperature,

(continues on next page)

120hapter 10. Hands-on-session 9 - Thermal conductivity calculations with the SSCHA

SSCHA SCHOOL 2023

(continued from previous page)

supercell = relax.minim.dyn.GetSupercell())
new_ensemble.generate(N = nconf*5)
new_ensemble.compute_ensemble(pot, compute_stress = True,
stress_numerical = False, cluster = None, verbose = True)
We minimize the free energy with this new ensemble
new_minimizer = sscha.SchaMinimizer.SSCHA_Minimizer (new_ensemble)
new_minimizer.minim_struct = False
new_minimizer.set_minimization_step(0.1)
new_minimizer.meaningful_factor = 0.001
new_minimizer.max_ka = 10000

new_minimizer.init()

new_minimizer.run()

new_minimizer.dyn.save_qe('final_dyn')

Update weights with a new dynamical matrice
new_ensemble.update_weights(new_minimizer.dyn, temperature)

Calculate Hessian and the third order tensor (return_d3 = True)
dyn_hessian, d3_tensor = new_ensemble.get_free_energy_hessian(include_v4 =_
—False,

get_full_hessian = True, return_d3 = True)
np.save("d3.npy", d3_tensor)
dyn_hessian.save_qge('hessian_dyn')

Here we used 4x4x4 supercell. You will need to converge results with respect to the size of the
supercell. A good check for the convergence could be the decay of the second and third order force
constants with the distance. Now that we have second and third order force constants, we can calculate
lattice thermal conductivity. For this we provide following script:

from __future__ import print_function

from __future__ import division
import numpy as np

import cellconstructor as CC

import cellconstructor.Phonons

import cellconstructor.ForceTensor

import cellconstructor.ThermalConductivity
import time

dyn_prefix = 'final_dyn'
ngirr = 8

SSCHA_TO_MS = cellconstructor.ThermalConductivity.SSCHA_TO_MS
RY_TO_THZ = cellconstructor.ThermalConductivity.SSCHA_TO_THZ
dyn = CC.Phonons.Phonons(dyn_prefix, nqirr)

supercell = dyn.GetSupercell()

fc3 = CC.ForceTensor.Tensor3(dyn.structure,
dyn.structure.generate_supercell (supercell), supercell)

(continues on next page)

10.1. Lattice thermal conductivity of silicon 121

SSCHA SCHOOL 2023

(continued from previous page)

d3 = np.load("d3.npy")
fc3.SetupFromTensor(d3)
fc3 = CC.ThermalConductivity.centering_fc3(£fc3)

mesh = [10,10,10]
smear = 0.03/RY_TO_THZ

tc =

CC.ThermalConductivity.ThermalConductivity(dyn, fc3,

kpoint_grid = mesh, scattering_grid = mesh, smearing_scale = None,
smearing_type = 'constant', cp_mode = 'quantum', off_diag = False)

temperatures = np.linspace(200,1200,10,dtype=float)
start_time = time.time()
tc.setup_harmonic_properties(smear)
tc.write_harmonic_properties_to_file()

tc.calculate_kappa(mode = 'SRTA', temperatures = temperatures,
write_lifetimes = True, gauss_smearing = True, offdiag_mode = 'wigner',
kappa_filename = 'Thermal_conductivity_SRTA', 1f method = 'fortran-LA'")

print('Calculated SSCHA kappa in: ', time.time() - start_time)
tc.calculate_kappa(mode = 'GK', write_lineshapes=False,
ne = 1000, temperatures = temperatures,

kappa_filename = 'Thermal_conductivity_GK")

print('Calculated SSCHA kappa in: ', time.time() - start_time)
Save ThermalConductivity object for postprocessing.
tc.save_pickle()

Important parts of the script are:

We define mesh on which we calculate phonon properties to be the same as the mesh we are
calculating scattering processes (variable mesh). This does not have to be true. In most cases
scattering_grid can be much smaller than kpoint_grid. Converge your results with respect
to both grids.

We use smearing approach to satisfy energy conservation laws. There are two ways: constant
and adaptive. In the case of smearing_type = 'constant' we have to provide smearing value
in Ry as the argument to setup_harmonic_properties function. In case we choose adaptive
smearing, the smearing constant will be different for different phonon modes. We still can de-
fine global variable smearing_scale with which we multiply precomputed smearing constants.
smearing_scale = 1.0 works pretty well in most cases. Converge your results with respect
to smearing variables.

off_diag variable defines whether we are doing calculation with what was termed as coherent
transport. This will be important for highly anharmonic materials with large bunching of phonon
modes.

Function calculate_kappa does most of the work. Here we will describe main options:

12Rhapter 10. Hands-on-session 9 - Thermal conductivity calculations with the SSCHA

SSCHA SCHOOL 2023

mode defines which method to use to calculate lattice thermal conductivity. Options are
SRTA which is Boltzmann transport equation solution in single relaxation time approxima-
tion and GK (Dangic et al.) which is Green-Kubo method that uses phonon spectral functions
instead of phonon lifetimes. These two modes should give similar results in low anharmonic-
ity materials, but different in strongly anharmonic ones.

gauss_smearing defines how we treat energy conservation in the calculation of self en-
ergy. If True it will use Gaussian functions, if False it will use Lorentzian functions. In
case of Gaussian smearing real part of the self energy is calculated using Kramers-Kronig
transformation.

offdiag_mode defines how we calculate coherent transport if mode = 'SRTA'. Two op-
tions: wigner (Simoncelli et al.) and gk (Isaeva et al.). If mode is GK, coherent transport is
included naturally.

1f_method defines how lifetimes are calculated in case mode = 'SRTA'. In short you want
to keep fortan-, and then add LA or P. These should give more or less same results. Additional
option is SC where we solve phonon lifetimes self-consistently, meaning we account for the
phonon lineshifts.

ne defines the number of frequency steps if we are calculating phonon lineshapes. Also
important in case of 1f_method = 'SC' because we solve self-consistent equation on a grid
of frequency values linearly interpolating real and imaginary part. Larger is better. Converge
your results with respect to ne.

This calculation should take a few minutes. The results are save in the kappa_filename.

Question:

If we check results we see that SRTA and GK results are different. Why? How can we improve this

calculation?

10.2 Lattice thermal conductivity of GeTe

As asecond example we will calculate lattice thermal conductivity of GeTe. GeTe is a highly anharmonic
material with a phase transition from rhombohedral to cubic phase at around 700 K. This means its lattice
thermal conductivity is very low. Additionally, it should show difference between SRTA and GK methods.

For SSCHA minimization we can calculate atomic properties using Gaussian Approximation Po-
tential developed for this material. However, in the interest of time we provided the dy-
namical matrices calculated at 0 K and the third order force constantsin the folder 09_Ther-
mal_conductivity_calculations_with_the_SSCHA.

Exercise:

Calculate lattice thermal conductivity of GeTe up to 1200 K (sample temperature from 300 K every

200 K). Ts

there a difference between GK and SRTA methods?

10.2. Lattice thermal conductivity of GeTe 123

https://www.nature.com/articles/s41524-021-00523-7
https://www.nature.com/articles/s41567-019-0520-x
https://www.nature.com/articles/s41467-019-11572-4
https://archive.materialscloud.org/record/2021.42
https://archive.materialscloud.org/record/2021.42

SSCHA SCHOOL 2023

Exercise:

Check if coherent transport has an influence on thermal conductivity in this material system.

Finally, in case we want to do some postprocessing we can load in the previously saved
ThermalConductivity object and access all previously calculated data. For example, we can calculate
phonon density of states calculated with auxiliary force constants and the one calculated with phonon
lineshapes:

from __future__ import print_function

from __future__ import division

Import the modules to read the dynamical matrix
import numpy as np

import cellconstructor as CC

import cellconstructor.Phonons

import cellconstructor.ForceTensor

import cellconstructor.ThermalConductivity
import time

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

tc = CC.ThermalConductivity.load_thermal_conductivity()

See at which temperatures we calculated stuff
tc.what_temperatures()

key = list(tc.lineshapes.keys()) # Get Ts for lineshapes

DOS calculated from auxiliary force constants

harm_dos = tc.get_dos()

Temperature dependent DOS calculated from lineshapes

first two arrays are raw data

second two is gaussian smoothed results \

#for the distance between energy points de

anharm_dos = tc.get_dos_from_lineshapes(float(key[-1]), de = 0.1)

Plot results

fig = plt.figure(figsize=(6.4, 4.8))
gsl = gridspec.GridSpec(l, 1)

ax = fig.add_subplot(gs1[0, 0])
ax.plotCharm_dos[0], harm_dos[1], 'k-'",

zorder=0, label = 'Harmonic')
ax.plot(anharm_dos[0], anharm_dos[1], 'r-',
zorder=0, label = 'Anharmonic raw @ ' + key[-1] + " K")

ax.plot(anharm_dos[2], anharm_dos[3], 'b-',

zorder=0, label = 'Anharmonic smooth @ ' + key[-1] + " K")
ax.set_xlabel ('Frequency (THz)')

ax.set_ylabel('Density of states')

(continues on next page)

128hapter 10. Hands-on-session 9 - Thermal conductivity calculations with the SSCHA

SSCHA SCHOOL 2023

(continued from previous page)

ax.legend(loc = 'upper right')
ax.set_ylim(bottom = 0.0)
fig.savefig('test.pdf")
plt.show()

Additionally, if we want to check a specific phonon lineshape (for example at I' point) we can do it with
a bit of hacking:

for igpt in range(tc.nkpt):
if(np.linalg.norm(tc.k_points[igpt]) == 0.0):
break

energies = np.arange(len(tc.lineshapes[key[-1]]1[0,0]),
dtype=float)“tc.delta_omega + tc.delta_omega
tc.write_lineshape('Lineshape_at_Gamma',

tc.lineshapes[key[-1]][iqpt], igpt, energies,

no')

10.2. Lattice thermal conductivity of GeTe 125

SSCHA SCHOOL 2023

128hapter 10. Hands-on-session 9 - Thermal conductivity calculations with the SSCHA

CHAPTER
ELEVEN

APENDIX: THE EKHI CLUSTER

For this SSCHA School we will provide access to the local CEM cluster named Ekhi.

11.1 ekhi.cfm.ehu.es

Ekhi cluster, designed specifically for novel Quantum ESPRESSO calculations, is composed of 28 com-
puting nodes with two Xeon Cascade Lake-SP 6230 processors (40 computing cores) and 96 GB of
memory in each node, with an Infiniband FDR interconnection network, giving a total of 1120 cores and
2.7 TB of memory.

You can view the cluster information with sinfo:

PARTITION AVAIL TIMELIMIT NODES

all*
all®
—27-29]
all*
fat
fat
long
test
test
—27-29]
test

up 2-00:00:00 1
up 2-00:00:00 20

up 2-00:00:00 10
up 14-00:00:0
up 14-00:00:0
up infinite
up 30:00 1
up 30:00 20

up 30:00 10

STATE NODELIST
mix ekhi31l
alloc ekhi[1-5,7-9,11-12,15-17,20-21,24-25,

idle ekhi[6,10,13-14,18-19,22-23,26,30]
alloc ekhi29
idle ekhi30
alloc ekhi[1-4]
mix ekhi31l
alloc ekhi[1-5,7-9,11-12,15-17,20-21,24-25,

idle ekhi[6,10,13-14,18-19,22-23,26,30]

This is an example of a batch input for the cluster Ekhi:

#!/bin/bash

#SBATCH
#SBATCH
—ALL)
#SBATCH
#SBATCH
—test)
#SBATCH
#SBATCH
#SBATCH
#SBATCH

--job-name=Test_ESPRESSO
--mail-type=NONE

--mail-user=
-p test

--nodes=1
--ntasks=40
--time=00:30:00
--output=job.log

#

H* ¥

H K W R

Job name
Mail events (NONE, BEGIN, END, FAIL,.

Where to send mail
queue (in this example the queue for.

Run all processes on a single node
Number of processes

Time limit hrs:min:sec

Standard output and error log

(continues on next page)

127

SSCHA SCHOOL 2023

(continued from previous page)

module load intel/2021a

node="hostname"

acho 'FEE Rk ke ke ke
echo "job run at node " $node
acho 'FEE Gk Gk Gk ek ek ek e

echo

#copies the directory from where you submited the job to lscratch

if [[! -e /lscratch/$USER]]; then
mkdir /lscratch/$USER
fi

cp -r $SLURM_SUBMIT_DIR /lscratch/$USER/$SLURM_JOB_ID

cd /lscratch/$USER/$SLURM_JOB_ID

export NPROCS=$SLURM_NTASKS

rm slurm®.out

HRRHAABH AR AR AR AR AR HA AR AR R A AR AR AR RA AU AR R AR U AR AR AU AR AR AR AR AR AR ARG HARH
module load QuantumESPRESSO

HARH ARG A AR AR AR AR AR HARH AR R AR HR R R AR RAR R AR AR UABHARRAG R AR ARG R AR AR A AR ARG RS AH
echo "put your jobs here"

mpirun -np 40 pw.x -npool 20 -i input_espresso.pwi > output_espresso.pwo
RARBHRHRHRHRHHHB BB HRHAARRRRRRRRARAARRRRARRBRBB R AAAAARRRRRRRARARRRRARARB R

cd $SLURM_SUBMIT_DIR
echo "Making backup..."
mkdir BACKUP
for file in *
do

if [$file != BACKUP] && [$file != slurm*out]; then

mv $file BACKUP/$file

fi

done

echo "Copying files from /lscratch..."
cp -r /lscratch/$USER/$SLURM_JOB_ID/* $SLURM_SUBMIT_DIR/

echo "Deleting files from /lscratch..."
rm -r /lscratch/$USER/$SLURM_JOB_ID

echo "Deleting the BACKUP..."
cd $SLURM_SUBMIT_DIR
for file in *
do
if [§file != BACKUP] && [$file != slurm*out] && [-e BACKUP/$file]
then
rm -r BACKUP/S$file

(continues on next page)

128 Chapter 11. Apendix: the Ekhi cluster

SSCHA SCHOOL 2023

(continued from previous page)

fi
done
rmdir BACKUP

echo "DONE"

This batch is run with:

sbatch run.sh

A typical usage of this cluster from a SSCHA script code includes:

username = user_name # Put here your login name for the cluster.
pseudo = {"Sr": "Sr.pbesol-spn-kjpaw_psl.1.0.0.UPF",
"Ti": "Ti.pbesol-spn-kjpaw_psl.1.0.0.UPF",

"0" : "O.pbesol-n-kjpaw_psl.1.0.0.UPF"}

input_params = {"tstress" : True, # Print the stress in the output

"tprnfor" : True, # Print the forces in the output

"tstress" : True, #output stresses

"ecutwfc" : 70, #The wavefunction energy cutoff for plane-waves (Ry)

"ecutrho" : 700, # The density energy cutoff (Ry)

"mixing_beta" : 0.4, # The mixing parameter in the self-consistent.
—calculation

"conv_thr" : le-9, # The energy convergence threshold (Ry)

"degauss" : 0.03, # Smearing temperature (Ry)
"smearing" : "mp",

"pseudo_dir" : "./pseudo/",

"occupations" : "fixed", #smearing or fixed (fixed for insulators.
—with a gap; gaussian smearing for metals;)

"disk_io" : "none"}

k_points = (8,8,8) # The k points grid (you can alternatively specify a.
—~kspacing)
k_offset = (1,1,1) # The offset of the grid (can increase convergence)

self.espresso_calc = Espresso(pseudopotentials = pseudo, input_data = input_
<,params,
kpts = k_points, koffset = k_offset)
my_hpc = sscha.Cluster.Cluster(pwd = None)
We setup the connection info

my_hpc.hostname = "{}@ekhi.cfm.ehu.es".format(username) # The command to.
—connect via ssh to the cluster (pippo@login.cineca.marconi.it)
my_hpc.workdir = "/scratch/{}/my_calculation".format(username) # the,

—directory in which the calculations are performed

Now we need to setup the espresso

First we must tell the cluster where to find him:

my_hpc.binary = "pw.x -npool NPOOL -i PREFIX.pwi > PREFIX.pwo"

Then we need to specify if some modules must be loaded in the submission.,

—SCcript (continues on next page)

11.1. ekhi.cfm.ehu.es 129

SSCHA SCHOOL 2023

(continued from previous page)

my_hpc.load_modules =
Here this is a bash script at the beginning of the submission
We can load modules

module load QuantumESPRESSO
export OMP_NUM_THREADS=1

All these information are independent from the calculation

Now we need some more specific info, like the number of processors, pools.
—and other stuff

my_hpc.n_cpu = 40 # e will use the 40 processors

my_hpc.n_nodes = 1 #In 1 node

my_hpc.n_pool = 10 # This is an espresso specific tool, the parallel CPU are.
—divided in 4 pools

We can also choose in how many batch of jobs we want to submit.,
—»simultaneously, and how many configurations for each job

my_hpc.batch_size = 10

my_hpc. job_number = 10

In this way we submit 10 jobs, each one with 10 configurations (overall 100.
—configuration at time)

We give 25 seconds of timeout
my_hpc.set_timeout (25)

We can specify the time limit for each job,
my_hpc.time = "03:00:00" # 3 hours

Create the working directory if none on the cluster
And check the connection
my_hpc.setup_workdir()

Then we can use in relax with:

relax = sscha.Relax.SSCHA(minim, ase_calculator = espresso_calc, N_
—configs=configurations, max_pop=20, cluster = my_hpc)

130 Chapter 11. Apendix: the Ekhi cluster

	Software Installation
	Requirements
	Python installation
	Install python packages

	SSCHA
	Personalize the compiler
	Running the testsuite

	TDSCHA
	JULIA speedup enhancement
	MPI Parallelization

	Install qe-5.1.0_elph
	EPIq
	fermisurfer installation
	F3ToyModel installation

	Hands-on-session 1 - First SSCHA simulations: free energy and structural relaxations
	The free energy of gold: a simulation in the NVT ensemble
	Plot the phonon dispersion

	Running in the NPT ensemble: simulating thermal expansion
	Ab initio calculation with the SSCHA code
	Parallelization

	Hands-on-session 2 - Advanced free energy minimization
	Manual submission
	Ensemble generation
	Calculation of energies and forces
	Free energy minimization

	Automatic submission with a cluster
	How to submit a calculation with a cluster automatically

	Hands-on-session 3 - Calculations of second-order phase transitions with the SSCHA
	Structural instability: calculation of the Hessian
	Second order phase transition

	Hands-on-session 4 - Calculation of spectral properties with the Self Consistent Harmonic Approximation
	Theoretical introduction
	Calculations on PbTe

	Hands-on-session 5 - Raman and Infrared spectra with the Time-Dependent Self Consistent Harmonic Approximation
	Computing the IR signal in ICE
	An introduction
	Prepare the infrared response
	Submitting the IR calculation
	Deep dive into the calculation
	Analyze the output

	Raman response
	Unpolarize Raman and IR

	Hands-on-session 6 - The SSCHA with machine learning potentials
	Hands-on exercise

	Hands-on-session 7: Calculation of the electron-phonon interaction and superconducting properties with the SSCHA
	Calculation of the electron-phonon matrix elements
	The SSCHA calculation
	Combine the SSCHA dynamical matrices with the electron-phonon matrix elements
	Solution of isotropic Migdal-Eliashberg equations
	Important remarks

	Hands-on-session 8: EPIq - Anharmonicity in electron-phonon coupling related properties
	Introduction
	Requirements
	About EPIq
	Calculations available in epiq
	EPIq workflow
	EPIq input file

	Let’s practice: calculation of electron-phonon coupling related properties for doped monolayer MoS2
	Wannier interpolation
	Check real space localization
	Phonon linewidth calculation
	Example of input file for linewidth calculation of monolayer MoS2
	Parameters
	Output files
	Inclusion of anharmonicity
	Dispersion along a line
	Advanced tutorial: Migdal-Eliashberg calculation using SSCHA Hessian matrices

	Hands-on-session 9 - Thermal conductivity calculations with the SSCHA
	Lattice thermal conductivity of silicon
	Lattice thermal conductivity of GeTe

	Apendix: the Ekhi cluster
	ekhi.cfm.ehu.es

